Download Free Crystal Structures Book in PDF and EPUB Free Download. You can read online Crystal Structures and write the review.

This classic text is devoted to describing crystal structures, especially periodic structures, and their symmetries. Updated material prepared by author enhances presentation, which can serve as text or reference. 1996 edition.
Crystals and Crystal Structures is an introductorytext for students and others who need to understand the subjectwithout necessarily becoming crystallographers. Using the book willenable students to read scientific papers and articles describing acrystal structure or use crystallographic databases with confidenceand understanding. Reflecting the interdisciplinary nature of the subject the bookincludes a variety of applications as diverse as the relationshipbetween physical properties and symmetry, and molecular and proteincrystallography. As well as covering the basics the book containsan introduction to areas of crystallography, such as modulatedstructures and quasicrystals, and protein crystallography, whichare the subject of important and activeresearch. A non-mathematical introduction to the key elements of thesubject Contains numerous applications across a variety ofdisciplines Includes a range of problems and exercises Clear, direct writing style "…the book contains a wealth of information and itfulfils its purpose of providing an interesting and broadintroduction to the terpenes." CHEMISTRY WORLD, February2007
This book presents and discusses those common crystal structures that would be encountered by students taking chemistry, or any subject within which chemistry forms a significant component. With many worked examples and a wide selection of problems with solutions. Includes instructions for making simple stereoviewers and computer programs, in a thorough treatment of binary alloys and three-dimensional packing in molecular solids.
For many years, evidence suggested that all solid materials either possessed a periodic crystal structure as proposed by the Braggs or they were amorphous glasses with no long-range order. In the 1970s, Roger Penrose hypothesized structures (Penrose tilings) with long-range order which were not periodic. The existence of a solid phase, known as a quasicrystal, that possessed the structure of a three dimensional Penrose tiling, was demonstrated experimentally in 1984 by Dan Shechtman and colleagues. Shechtman received the 2011 Nobel Prize in Chemistry for his discovery. The discovery and description of quasicrystalline materials provided the first concrete evidence that traditional crystals could be viewed as a subset of a more general category of ordered materials. This book introduces the diversity of structures that are now known to exist in solids through a consideration of quasicrystals (Part I) and the various structures of elemental carbon (Part II) and through an analysis of their relationship to conventional crystal structures. Both quasicrystals and the various allotropes of carbon are excellent examples of how our understanding of the microstructure of solids has progressed over the years beyond the concepts of traditional crystallography.
A concise introduction to modern crystal structure determination, emphasizing both the crystallographic background and the successive practical steps. In the theoretical sections, more importance is attached to a good understanding, than to a rigorous mathematical treatment. The most important measuring techniques, including the use of modern area detectors, and the methods of data reduction, structure solution and refinement are discussed from a practical point of view. Special emphasis is put on the ability to recognize and avoid possible errors and traps, and to judge the quality of results.
This volume is devoted to the electron and phonon energy states of inorganic layered crystals. The distinctive feature of these low-dimensional materials is their easy mechanical cleavage along planes parallel to the layers. This feature implies that the chemical binding within each layer is much stronger than the binding between layers and that some, but not necessarily all, physical properties of layered crystals have two-dimensional character. In Wyckoff's Crystal Structures, SiC and related com pounds are regarded as layered structures, because their atomic layers are alternately stacked according to the requirements of cubic and hexagonal close-packing. How ever, the uniform (tetrahedral) coordination of the atoms in these compounds excludes the kind of structural anisotropy that is fundamental to the materials dis cussed in this volume. An individual layer of a layered crystal may be composed of either a single sheet of atoms, as in graphite, or a set of up to five atomic sheets, as in Bi2 Te3' A layer may also have more complicated arrangements of the atoms, as we find for example in Sb S . But the unique feature common to all these materials is 2 3 the structural anisotropy, which directly affects their electronic and vibrational properties. The nature of the weak interlayer coupling is not very well understood, despite the frequent attribution of the coupling in the literature to van der Waals forces. Two main facts, however, have emerged from all studies.
The book presents the basic information needed to understand and to organize the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals.
A volume which includes entries on quasicrystals, icosahedral packing, other packing considerations, extended structures, data treatment and data mining is presented by luminaries from the crystallography community. Several of the contributions are from the schools of such trend-setting crystallographers as J. Desmond Bernal and Aleksandr I. Kitaigorodskii. Internationally renowned scientists contributed such as Tom L. Blundell, Johann Jacob Burckhardt, John L. Finney, Jenny P. Glusker, Nobel laureate Herbert A. Hauptman, the 2014 Ewald-Prize winner A. Janner, Aminoff-Prize winner Isabella Karle, Nobel laureate Jerome Karle, Buckley-Prize winner Alan L. Mackay, Ewald-Prize winner David Sayre, Vladimir Shevchenko, and J. Fraser Stoddart. A few frontier topics dominate the selected material. Pioneers of the direct methods describe the phase problem and how it was solved, including the mathematical approach and the utilization of experience with gas-phase electron diffraction. The reviews by Herbert Hauptman, Jerome and Isabella Karle, and David Sayre reach to the present day in assessing the possibilities of X-ray crystallography. Another focus topic is the investigation of systems that are outside the so-called classical system of crystals. They include quasicrystals, imperfect and very small crystals, supramolecular species, crystal structures without lattice, clusters, nanomaterials among others. Application of synchrotron and cryoprotection techniques, the free-electron laser flash technique and others are mentioned in addition to X-ray crystallography. The relationship between structural and materials properties are examined and uncovered. The broader topics of the so-called generalized crystallography include polymers, clusters, polydisperse chain assemblies, and giant icosahedral fullerenes. There are some key contributions related to the structural investigation of biological macromolecules.
In crystal chemistry and crystal physics, the relations between the symmetry groups (space groups) of crystalline solids are of special importance. Part 1 of this book presents the necessary mathematical foundations and tools: the fundamentals of crystallography with special emphasis on symmetry, the theory of the crystallographic groups, and the formalisms of the needed crystallographic computations. Part 2 gives an insight into applications to problems in crystal chemistry. With the aid of numerous examples, it is shown how crystallographic group theory can be used to make evident relationships between crystal structures, to set up a systematic order in the huge amount of known crystal structures, to predict crystal structures, to analyse phase transitions and topotactic reactions in the solid state, to understand the formation of domains and twins in crystals, and to avoid errors in crystal structure determinations. A broad range of end-of-chapter exercises offers the possibility to apply the learned material. Worked-out solutions to the exercises can be found at the end of the book.