Download Free Cracking The Quantum Mystery Book in PDF and EPUB Free Download. You can read online Cracking The Quantum Mystery and write the review.

Enter the invisible world of sub-atomic physics and discover the very core of existence. Cracking Quantum Physics takes you through every area of particle physics to clearly explain how our world was, and is, created, and breaks down the most complex theories into easily understandable elements. Subjects covered include: -Time travel -The Higgs field -Dark Matter -The anatomy of the elements -Enter the atom -Quantum reality -Quantum tunnelling -Electrodynamics -Accelerators and colliders -The Zeno effect An easy-to-understand guide to some of the most complex and intriguing topics: Cracking Quantum Physics is a must-read for anyone who has ever wondered about the underlying forces and materials that make up the world as we know it.
Named a Best Book of 2021 by the Financial Times and a Best Science Book of 2021 by The Guardian “Rovelli is a genius and an amazing communicator… This is the place where science comes to life.” ―Neil Gaiman “One of the warmest, most elegant and most lucid interpreters to the laity of the dazzling enigmas of his discipline...[a] momentous book” ―John Banville, The Wall Street Journal A startling new look at quantum theory, from the New York Times bestselling author of Seven Brief Lessons on Physics, The Order of Time, and Anaximander. One of the world's most renowned theoretical physicists, Carlo Rovelli has entranced millions of readers with his singular perspective on the cosmos. In Helgoland, he examines the enduring enigma of quantum theory. The quantum world Rovelli describes is as beautiful as it is unnerving. Helgoland is a treeless island in the North Sea where the twenty-three-year-old Werner Heisenberg made the crucial breakthrough for the creation of quantum mechanics, setting off a century of scientific revolution. Full of alarming ideas (ghost waves, distant objects that seem to be magically connected, cats that appear both dead and alive), quantum physics has led to countless discoveries and technological advancements. Today our understanding of the world is based on this theory, yet it is still profoundly mysterious. As scientists and philosophers continue to fiercely debate the meaning of the theory, Rovelli argues that its most unsettling contradictions can be explained by seeing the world as fundamentally made of relationships rather than substances. We and everything around us exist only in our interactions with one another. This bold idea suggests new directions for thinking about the structure of reality and even the nature of consciousness. Rovelli makes learning about quantum mechanics an almost psychedelic experience. Shifting our perspective once again, he takes us on a riveting journey through the universe so we can better comprehend our place in it.
“Anyone who is not shocked by quantum theory has not understood it.” Since Niels Bohr said this many years ago, quantum mechanics has only been getting more shocking. We now realize that it’s not really telling us that “weird” things happen out of sight, on the tiniest level, in the atomic world: rather, everything is quantum. But if quantum mechanics is correct, what seems obvious and right in our everyday world is built on foundations that don’t seem obvious or right at all—or even possible. An exhilarating tour of the contemporary quantum landscape, Beyond Weird is a book about what quantum physics really means—and what it doesn’t. Science writer Philip Ball offers an up-to-date, accessible account of the quest to come to grips with the most fundamental theory of physical reality, and to explain how its counterintuitive principles underpin the world we experience. Over the past decade it has become clear that quantum physics is less a theory about particles and waves, uncertainty and fuzziness, than a theory about information and knowledge—about what can be known, and how we can know it. Discoveries and experiments over the past few decades have called into question the meanings and limits of space and time, cause and effect, and, ultimately, of knowledge itself. The quantum world Ball shows us isn’t a different world. It is our world, and if anything deserves to be called “weird,” it’s us.
Quantum Theory is the most revolutionary discovery in physics since Newton. This book gives a lucid, exciting, and accessible account of the surprising and counterintuitive ideas that shape our understanding of the sub-atomic world. It does not disguise the problems of interpretation that still remain unsettled 75 years after the initial discoveries. The main text makes no use of equations, but there is a Mathematical Appendix for those desiring stronger fare. Uncertainty, probabilistic physics, complementarity, the problematic character of measurement, and decoherence are among the many topics discussed. ABOUT THE SERIES: The Very Short Introductions series from Oxford University Press contains hundreds of titles in almost every subject area. These pocket-sized books are the perfect way to get ahead in a new subject quickly. Our expert authors combine facts, analysis, perspective, new ideas, and enthusiasm to make interesting and challenging topics highly readable.
One of Smithsonian's Favorite Books of 2018 One of Forbes's 2018 Best Books About Astronomy, Physics and Mathematics One of Kirkus's Best Books of 2018 The intellectual adventure story of the "double-slit" experiment, showing how a sunbeam split into two paths first challenged our understanding of light and then the nature of reality itself--and continues to almost 200 years later. Many of science's greatest minds have grappled with the simple yet elusive "double-slit" experiment. Thomas Young devised it in the early 1800s to show that light behaves like a wave, and in doing so opposed Isaac Newton. Nearly a century later, Albert Einstein showed that light comes in quanta, or particles, and the experiment became key to a fierce debate between Einstein and Niels Bohr over the nature of reality. Richard Feynman held that the double slit embodies the central mystery of the quantum world. Decade after decade, hypothesis after hypothesis, scientists have returned to this ingenious experiment to help them answer deeper and deeper questions about the fabric of the universe. How can a single particle behave both like a particle and a wave? Does a particle exist before we look at it, or does the very act of looking create reality? Are there hidden aspects to reality missing from the orthodox view of quantum physics? Is there a place where the quantum world ends and the familiar classical world of our daily lives begins, and if so, can we find it? And if there's no such place, then does the universe split into two each time a particle goes through the double slit? With his extraordinarily gifted eloquence, Anil Ananthaswamy travels around the world and through history, down to the smallest scales of physical reality we have yet fathomed. Through Two Doors at Once is the most fantastic voyage you can take.
A concise, "no-frills" introduction to quantum computation and quantum cryptography for non-experts. Rather than concentrating on stories about scientists and philosophical concepts, it provides a step-by-step approach to quantum information. Starting from the idea of quantum cryptography, it presents the basic principles of quantum mechanics and explains how this can be used to make cryptography absolutely secure against eavesdropping. Subsequently, the most important quantum algorithms are explained and technical problems in realizing quantum computers are discussed, followed by a presentation of recent experiments -- some of which are found here in a textbook for the first time. Easily accessible for undergraduates and graduates -- especially those studying subjects other than physics -- who need an introduction to this rapidly developing topic.
In the evolutionary scheme of things, humans are immature babies. Not understanding how the system of life operates, we find ourselves in a scary, unsafe and unsustainable space on a human race to the bottom accelerated by the hand of artificial intelligence. The book provides a scientific synthesis of nature’s simple design rules of life as information. The science provides significant potential in its own right, not least to allow mastery of photosynthesis for a sustainable solution in the fight against climate change and the root cause of all sorts of human diseases and disorders. Biomimicry in technology provides a simple solution to solve complexity by engagement of People Power to stretch our collective imaginations to co-create a global system redesign and an exciting future vital to avoid extinction. This book is a labour of love and a reflection of a monumental effort driven by a real passion, sense of purpose and belief in the monumental potential impact IF! progressed.
Ideas of Quantum Chemistry shows how quantum mechanics is applied to chemistry to give it a theoretical foundation. The structure of the book (a TREE-form) emphasizes the logical relationships between various topics, facts and methods. It shows the reader which parts of the text are needed for understanding specific aspects of the subject matter. Interspersed throughout the text are short biographies of key scientists and their contributions to the development of the field.Ideas of Quantum Chemistry has both textbook and reference work aspects. Like a textbook, the material is organized into digestable sections with each chapter following the same structure. It answers frequently asked questions and highlights the most important conclusions and the essential mathematical formulae in the text. In its reference aspects, it has a broader range than traditional quantum chemistry books and reviews virtually all of the pertinent literature. It is useful both for beginners as well as specialists in advanced topics of quantum chemistry. The book is supplemented by an appendix on the Internet.* Presents the widest range of quantum chemical problems covered in one book * Unique structure allows material to be tailored to the specific needs of the reader * Informal language facilitates the understanding of difficult topics
The untold story of Albert Einstein's role as the father of quantum theory Einstein and the Quantum reveals for the first time the full significance of Albert Einstein's contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light—the core of what we now know as quantum theory—than he did about relativity. A compelling blend of physics, biography, and the history of science, Einstein and the Quantum shares the untold story of how Einstein—not Max Planck or Niels Bohr—was the driving force behind early quantum theory. It paints a vivid portrait of the iconic physicist as he grappled with the apparently contradictory nature of the atomic world, in which its invisible constituents defy the categories of classical physics, behaving simultaneously as both particle and wave. And it demonstrates how Einstein's later work on the emission and absorption of light, and on atomic gases, led directly to Erwin Schrödinger's breakthrough to the modern form of quantum mechanics. The book sheds light on why Einstein ultimately renounced his own brilliant work on quantum theory, due to his deep belief in science as something objective and eternal.
The year 2001 marked more than just the beginning of Stanley Kubrick's Space Odyssey, it marked the beginning of the genome era. That was the year scientists first read the 3 billion letters of DNA that make up the human genome. This was followed by a veritable Noah's Ark of genomesandmdash;sponges and worms, dogs and cows, rice and wheat, chimps and elephantsandmdash;180 creatures aboard so far. So what have we learned from all this? How has it changed the way we practise medicine, grow crops and breed livestock? What have we learned about evolution? These are the questions science writer and molecular biologist Elizabeth Finkel asked herself four years ago. To find the answers she travelled the science frontier from Botswana to Boston, from Warracknabeal to Mexico and tracked down scientists working in the field. Their stories, told here, paint the picture of what it means to be part of the genome generation. 'The Genome Generation is absolutely riveting. These tales from the frontier are a 'must read' for everyone who wishes to understand our pastandmdash;the logic of evolutionandmdash;or take a peep into our exciting future at the creation of 'super plants' through 'digital agriculture'.'andmdash;R.A. Mashelkar, CSIR Bhatnagar Fellow and India President, Global Research Alliance