Download Free Crack Dynamics Book in PDF and EPUB Free Download. You can read online Crack Dynamics and write the review.

This book provides an up-to-date knowledge on theory and experimental results of rate-dependent fracture processes in metallic materials. The objective is to expose the current status of a growing branch of fracture mechanics called generally "Dynamic Fracture". Crack dynamics takes into account not only the effects of inertia but also rate sensitivity of a material under consideration. This volume has been prepared by four leading authorities in fracture dynamics: D.R. Curran, J.F. Kalthoff, J.R. Klepaczko and F. Nilsson. A broad range of problem is covered: dynamic fracture theory, application of dynamic fracture mechanics, dynamic crack inition and microstatistical fracture mechanics in dynamic fracture. The book in its present format may serve as a text supplement in lecturing on fracture mechanics. On the other hand, it may serve as an instructional aid in engineering of fracture prevention.
Covering various aspects of dynamic fractures this book contains state-of-the-art contributions from leading scientists in the field of crack dynamics.
Cracks and Fracture consists of nine chapters in logical sequence. In two introductory chapters, physical processes in the vicinity of the crack edge are discussed and the fracture process is described. Chapter 3 develops general basic concepts and relations in crack mechanics, such as path independent integrals, stress intensity factors and energy flux into the crack edge region. Chapters 4-7 deal with elastostatic cracks, stationary or slowly moving elastic-plastic cracks, elastodynamic crack mechanics and elastoplastic aspects of fracture, including dynamic fracture mechanics. Appendices include general formulae, the basic theory of analytic functions, introduction to Laplace and Hankel transforms and description of certain basic relations, for instance for stress waves in solids. There is an extensive bibliography, containing references to both classical and recent work, and a comprehensive index. Presents an extensive bibliography containing references to both classical and recent works and a comprehensive index Appendices include general formulas, the basic theory of analytic functions, introduction to Laplace and Hankel transforms, and descriptions of certain basic relations, for instance for stress waves in solids
Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.
Quantifying and Modeling Soil Structure Dynamics emphasizes a systems approach to how soil structure changes in response to inputs and to the environment. Soil structure is a dynamic, complex system affected by tillage, wheel traffic, roots, soil life, shrink–swell, and freeze–thaw. In turn, soil structure affects root growth and function, soil fauna, solute transport, water infiltration, gas exchange, thermal and electrical conductivities, traffic bearing capacity, and more. Ignoring soil structure or viewing it as “static” can lead to poor predictions and management. Readers will especially appreciate the description of soil structure influence on endpoints, such as environmental contamination and efficient water use, and how models should be adjusted to include dynamic soil structure components for accurate outputs.
- self-contained and well illustrated - complete and comprehensive derivation of mechanical/mathematical results with enphasis on issues of practical importance - combines classical subjects of fracture mechanics with modern topics such as microheterogeneous materials, piezoelectric materials, thin films, damage - mechanically and mathematically clear and complete derivations of results
Advances and Trends in Structures and Dynamics contains papers presented at the symposium on Advances and Trends in Structures and Dynamics held in Washington, D.C., on October 22-25, 1984. Separating 67 papers of the symposium as chapters, this book documents some of the major advances in the structures and dynamics discipline. The chapters are further organized into 13 parts. The first three parts explore the trends and advances in engineering software and hardware; numerical analysis and parallel algorithms; and finite element technology. Subsequent parts show computational strategies for nonlinear and fracture mechanics problems; mechanics of materials and structural theories; structural and dynamic stability; multidisciplinary and interaction problems; composite materials and structures; and optimization. Other chapters focus on random motion and dynamic response; tire modeling and contact problems; damping and control of spacecraft structures; and advanced structural applications.
Dynamics of Materials: Experiments, Models and Applications addresses the basic laws of high velocity flow/deformation and dynamic failure of materials under dynamic loading. The book comprehensively covers different perspectives on volumetric law, including its macro-thermodynamic basis, solid physics basis, related dynamic experimental study, distortional law, including the rate-dependent macro-distortional law reflecting strain-rate effect, its micro-mechanism based on dislocation dynamics, and dynamic experimental research based on the stress wave theory. The final section covers dynamic failure in relation to dynamic damage evolution, including the unloading failure of a crack-free body, dynamics of cracks under high strain-rate, and more. - Covers models for applications, along with the fundamentals of the mechanisms behind the models - Tackles the difficult interdisciplinary nature of the subject, combining macroscopic continuum mechanics with thermodynamics and macro-mechanics expression with micro-physical mechanisms - Provides a review of the latest experimental methods for the equation of state for solids under high pressure and the distortional law under high strain-rates of materials