Download Free Cosmic Rays And Problems Of Space Physics Book in PDF and EPUB Free Download. You can read online Cosmic Rays And Problems Of Space Physics and write the review.

Over recent years there has been marked growth in interest in the study of techniques of cosmic ray physics by astrophysicists and particle physicists. Cosmic radiation is important for the astrophysicist because in the farther reaches of the universe. For particle physicists, it provides the opportunity to study neutrinos and very high energy particles of galactic origin. More importantly, cosmic rays constitue the background, and in some cases possibly the signal, for the more exotic unconfirmed hypothesized particles such as monopoles and sparticles. Concentrating on the highest energy cosmic rays, this book describes where they originate, acquire energy, and interact, in accreting neutron stars, supernova remnants, in large-scale shock waves. It also describes their interactions in the atmosphere and in the earth, how they are studied in surface and very large underground detectors, and what they tell us.
In 1912 Victor Franz Hess made the revolutionary discovery that ionizing radiation is incident upon the Earth from outer space. He showed with ground-based and balloon-borne detectors that the intensity of the radiation did not change significantly between day and night. Consequently, the sun could not be regarded as the sources of this radiation and the question of its origin remained unanswered. Today, almost one hundred years later the question of the origin of the cosmic radiation still remains a mystery.Hess' discovery has given an enormous impetus to large areas of science, in particular to physics, and has played a major role in the formation of our current understanding of universal evolution. For example, the development of new fields of research such as elementary particle physics, modern astrophysics and cosmology are direct consequences of this discovery. Over the years the field of cosmic ray research has evolved in various directions: Firstly, the field of particle physics that was initiated by the discovery of many so-called elementary particles in the cosmic radiation. There is a strong trend from the accelerator physics community to reenter the field of cosmic ray physics, now under the name of astroparticle physics. Secondly, an important branch of cosmic ray physics that has rapidly evolved in conjunction with space exploration concerns the low energy portion of the cosmic ray spectrum. Thirdly, the branch of research that is concerned with the origin, acceleration and propagation of the cosmic radiation represents a great challenge for astrophysics, astronomy and cosmology. Presently very popular fields of research have rapidly evolved, such as high-energy gamma ray and neutrino astronomy. In addition, high-energy neutrino astronomy may soon initiate as a likely spin-off neutrino tomography of the Earth and thus open a unique new branch of geophysical research of the interior of the Earth. Finally, of considerable interest are the biological and medical aspects of the cosmic radiation because of it ionizing character and the inevitable irradiation to which we are exposed. This book is a reference manual for researchers and students of cosmic ray physics and associated fields and phenomena. It is not intended to be a tutorial. However, the book contains an adequate amount of background materials that its content should be useful to a broad community of scientists and professionals. The present book contains chiefly a data collection in compact form that covers the cosmic radiation in the vicinity of the Earth, in the Earth's atmosphere, at sea level and underground. Included are predominantly experimental but also theoretical data. In addition the book contains related data, definitions and important relations. The aim of this book is to offer the reader in a single volume a readily available comprehensive set of data that will save him the need of frequent time consuming literature searches.
The present monograph as well as the next one (Dorman, M2005) is a result of more than 50 years working in cosmic ray (CR) research. After graduation in December 1950 Moscow Lomonosov State University (Nuclear and Elementary Particle Physics Division, the Team of Theoretical Physics), my supervisor Professor D. I. Blokhintsev planned for me, as a winner of a Red Diploma, to continue my education as an aspirant (a graduate student) to prepare for Ph. D. in his very secret Object in the framework of what was in those time called the Atomic Problem. To my regret the KGB withheld permission, and I, together with other Jewish students who had graduated Nuclear Divisions of Moscow and Leningrad Universities and Institutes, were faced with a real prospect of being without any work. It was our good fortune that at that time there was being brought into being the new Cosmic Ray Project (what at that time was also very secret, but not as secret as the Atomic Problem), and after some time we were directed to work on this Project. It was organized and headed by Prof. S. N. Vernov (President of All-Union Section of Cosmic Rays) and Prof. N. V. Pushkov (Director of IZMIRAN); Prof. E. L. Feinberg headed the theoretical part of the Project.
In 2010, NASA and the National Science Foundation asked the National Research Council to assemble a committee of experts to develop an integrated national strategy that would guide agency investments in solar and space physics for the years 2013-2022. That strategy, the result of nearly 2 years of effort by the survey committee, which worked with more than 100 scientists and engineers on eight supporting study panels, is presented in the 2013 publication, Solar and Space Physics: A Science for a Technological Society. This booklet, designed to be accessible to a broader audience of policymakers and the interested public, summarizes the content of that report.
This volume, The Sun to the Earth-and Beyond: Panel Reports, is a compilation of the reports from five National Research Council (NRC) panels convened as part of a survey in solar and space physics for the period 2003-2013. The NRC's Space Studies Board and its Committee on Solar and Space Physics organized the study. Overall direction for the survey was provided by the Solar and Space Physics Survey Committee, whose report, The Sun to the Earth-and Beyond: A Decadal Research Strategy in Solar and Space Physics, was delivered to the study sponsors in prepublication format in August 2002. The final version of that report was published in June 2003. The panel reports provide both a detailed rationale for the survey committee's recommendations and an expansive view of the numerous opportunities that exist for a robust program of exploration in solar and space physics.
Offers an accessible text and reference (a cosmic-ray manual) for graduate students entering the field and high-energy astrophysicists will find this an accessible cosmic-ray manual Easy to read for the general astronomer, the first part describes the standard model of cosmic rays based on our understanding of modern particle physics. Presents the acceleration scenario in some detail in supernovae explosions as well as in the passage of cosmic rays through the Galaxy. Compares experimental data in the atmosphere as well as underground are compared with theoretical models
The subject of this volume in the Astrophysics and Space Science Library is Electro magnetic Radiation in Space. It is essentially based on the lectures given at the third ESRO Summer School which was held from 19 July to 13 August, 1965, in Alpbach, Austria. Fifty-eight selected students attended the courses representing the following countries: Austria (2), Belgium (1), Denmark (1), France (12), Germany (10), Italy (7), Netherlands (2), Spain (4), Sweden (6), Switzerland (3), United Kingdom (9), United States (1). Thirteen lectures courses and nine seminars were given by sixteen different scientists in total. In this book the courses and seminars have been classified in three parts according to the kind of radiation which they mainly deal with: Ultraviolet Radiation, X Radiation and Cosmic Radiation. These parts can be broken down further in theo retical and observational aspects, whereas in the first and second part solar as well as stellar ultraviolet- and X-radiation can be distinguished. * Due to various reasons the publication of this volume had to be delayed; it was therefore judged appropriate to bring the text up to date. The various lecturers have been asked to revise the manuscripts and to eventually add new information which has been acquired in this rapidly evolving field of space astrophysics. Most authors have responded positively to this request, some even have completely rewritten the manuscript.
In February 2004, the President announced a new goal for NASA; to use humans and robots together to explore the Moon, Mars, and beyond. In response to this initiative, NASA has adopted new exploration goals that depend, in part, on solar physics research. These actions raised questions about how the research agenda recommended by the NRC in its 2002 report, The Sun to the Earth and Beyond, which did not reflect the new exploration goals, would be affected. As a result, NASA requested the NRC to review the role solar and space physics should play in support of the new goals. This report presents the results of that review. It considers solar and space physics both as aspects of scientific exploration and in support of enabling future exploration of the solar system. The report provides a series of recommendations about NASA's Sun-Earth Connections program to enable it to meet both of those goals.