Download Free Correlation Between Magnetic Interactions And Magnetic Structures In Some Antiferromagnetic Rare Earth Intermetallic Compounds Book in PDF and EPUB Free Download. You can read online Correlation Between Magnetic Interactions And Magnetic Structures In Some Antiferromagnetic Rare Earth Intermetallic Compounds and write the review.

Rare-earth intermetallics, also known as lanthanide elements, play an important role in the study of magnetic materials and the development of semi- and super-conducting materials. This handbook provides an up-to-date compilation of crystallographic, physical, and magnetic data on rare-earth intermetallic compounds. Over 20 different structure types are described in detail with an emphasis on how crystal structure can affect magnetic properties. Theoretical models for magnetic interactions are described as well as the impact of crystal electric fields on transport properties, magneto crystalline anistropy and hyperfine interactions. This book provides materials scientists, engineers and physicists with all the critical information needed to use rare-earth intermetallics effectively in the development of new materials.
Rare Earth Intermetallics provides an account of the magnetic characteristics of rare earth intermetallics. This book discusses bulk magnetic characteristics, such as temperature dependence of susceptibility, saturation magnetization, nature of the cooperative magnetic phase, low temperature specific heats, and related thermal properties. Other topics include the magnetic interactions, crystal field interaction by the operator equivalent method, and rare earth-nontransition metal systems. The miscellaneous IVA compounds, rare earth substitution, variation in the iron moment, and compounds with 4d and 5d transition metals are also elaborated in this text. This publication is recommended for students and researchers interested in rare earth intermetallics.
The rare earths have a unique place among the elements. Although very much alike chemically and in most phy~ical properties they each have very different and striking magnetic properties. The reason, of course, lies in their 4f electrons which determine the magnetic properties but have little effect on other chemical and physical behaviour. Although they are not rare, some indeed are among the more common heavy elements in the earth's crust, the difficulty of separation has meant that their intricate magnetic properties have only recently been unravelled. Now, however, the general pattern of their magnetism is well charted and the underlying theory is well understood. Both are thoroughly summarised in this book. It provides an excellent example of the kind of extensive synthesis which is possible with modem solid state physics. it represents only a high plateau in the ascent to complete understanding. But It will become clear to the reader that while the overall position is satisfactory there are many details still to be elucidated experimentally and much to be done theoretically before all the underlying forces are identified and estimated from a priori calculations. It is hoped that the book will provide a useful stimulus in this direction. It should also be of use to those who are interested in related disciplines, for example the rare earth compounds, or the transition metals. In addition rare earths promise to be important technologically as alloy constituents.
This volume covers various physical aspects of a wide range of rare-earth materials. Magnetic phenomena dominate the contents of the first four chapters which deal with thin films and layered structures, and intermetallic and nonmetallic compounds. The remaining two chapters deal with coherent emission and electronic structure calculations of lanthanide molecules.The first chapter covers the state-of-the-art of the synthesis and properties of thin films of the rare-earth metals and layered superstructures of two rare-earth metals. The following chapter is a review of rare-earth-transition metal nanoscale multilayers and describes the recent advances in our understanding of magnetic structure, interfacial magnetism, and origin of perpendicular magnetic anisotropy of lanthanide-transition-metal nanoscale multilayers. The next chapter deals with one of the important series of rare-earth intermetallic compounds, those which possess the ThNm 12 -type structure. The authors of the following chapter review the specific magnetic and magnetoelastic properties of certain crystals, which are determined by the localized electronic magnetic moments of the lanthanide ions in the crystal lattice and their interactions with each other and surrounding ions. The chapter on coherent emission differs from other reviews on the subject in that it concentrates on the broader issues. Here the emphasis is on superradiance, superfluorescence, amplification of spontaneous emission by other stimulated emision than the laser effect and coherent spontaneous emission. The final chapter describes the progress that has been made in electronic structure calculations of lanthanide-containing molecules, especially in the last 10 years.
Contents: Spin Fluctuations in Heisenberg Magnets: Dynamic Critical Phenomena and Excitations in Quasi-Periodic Systems (S W Lovesey)Quenching of Spin Fluctuations by High Magnetic Fields (K Ikeda et al.)Kondo Effect and Heavy Fermions (B Coqblin et al.)Magnetic Interactions in Correlated Electron Systems: High Pressure Investigations (J D Thompson)Hall Effect in Heavy Fermion and Mixed Valence Systems (A Hamzić & A Fert)Magnetic Properties of Uranium Based 1-2-2 Intermetallics (T Endstra et al.)Inelastic Magnetic Excitations in Anomalous Rare Earth Intermetallics (E Holland-Moritz)Neutron Scattering Studies of Magnetic Properties of Actinide Systems (G H Lander & G Aeppli)Magnetic Properties of Heavy Fermion Systems — As Studied by μSR-Spectroscopy (A Schenck)Re-Entrant Spin-Glasses: Do They Exist? (B R Coles & S B Roy)Insulating Spin Glass Systems (J K Srivastava)Nuclear Magnetism in Metals and Alloys (S Ramakrishnan & G Chandra) Readership: Solid-state physicists and chemists. keywords:
This volume of the handbook covers a variety of topics with three chapters dealing with a range of lanthanide magnetic materials, and three individual chapters concerning equiatomic ternary ytterbium intermetallic compounds, rare-earth polysulfides, and lanthanide organic complexes. Two the chapters also include information of the actinides and the comparative lanthanide/actinide behaviors.
The present conference, the fourth successive on this subject, was organized to commemorate the 75th birthday of Professor Wtodzimierz Trzebiatowski, one of the pioneers in the field of f-electron materials structure, particularly in the magnetism of actinides. This volume contains 64 papers presented at the conference held in Wroctaw, Poland, September 22-25, 1981. Twenty-one were invited talks. About 100 participants from 13 countries attended the meeting during four days of lecture presentation (note these two numbers have been constant for the last two conferences). The conference consisted of sessions devoted to the investigation of crystalline electric fields and structural effects by spectroscopic techniques, neutron diffraction, magnetic, thermodynamic and electrical measurements all over broad temperature, magnetic field and pressure ranges. Materials investigated included rare earth intermetallics, hydrides, diluted systems and actinides, and among them some exhibited singlet ground state behavior. The experimental results were supplemented by theory. It is our pleasure to mention those persons who helped us make the conference successful. The International Advisory Com mittee included W.J.L. Buyers, B.R. Cooper, J.E. Crow, P. Fulde, A. Furrer, T. Kasuya, L. Kowalewski, G.R. Lander, R. Lemaire and D. Wohlleben. We thank them for valuable suggestions concerning invited speakers. We also wish to thank the co-workers of the In stitute for Low Temperature and Structure Research of the Polish Academy of Sciences in Wroclaw, especially A. Baran, M. Grzebyk, K.