Download Free Copper Nanostructures Next Generation Of Agrochemicals For Sustainable Agroecosystems Book in PDF and EPUB Free Download. You can read online Copper Nanostructures Next Generation Of Agrochemicals For Sustainable Agroecosystems and write the review.

Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems considers the impact of copper-based nanostructures on agri-food sectors. Sections highlight the green synthesis of copper nanoparticles, production mechanisms, eco-safety, and future perspectives, discuss the increasing importance of copper nanomaterials in plant protection applications, describe the use of copper nanostructures in plant science applications, cover antimicrobial applications, explore copper nanostructure applications, and summarize current applications in agroecosystems, such as copper nanoparticles as nanosensors, their negative ecological effects, estimation risks, and more. - Assesses the impact of a large variety of copper-based nanostructures on the agri-food sector - Discusses how the properties of a variety of copper-based nanomaterials make them effective for agricultural applications - Explains the challenges surrounding the mass production of copper-based nanomaterials
Large-scale chemical fertilizer application causes irreparable damage to soil structure, mineral cycles, soil microbial flora, plants, and other food chains across ecosystems, culminating in heritable mutations in future generations of consumers. A better way forward is the use of nanofertilizers to focus on macro elements (N, P, K), as switching to nanofertilizers may result in large environmental benefits by replacing the majority of these nutrients. Furthermore, the biosynthesis of nanomaterials using bacteria, algae, yeast, fungus, actinomycetes, and plants has opened up a new avenue of research in the production of inorganic nanoparticles as ecologically friendly fertilizers. Nanofertilizers should also attain increased efficiency because of a several-fold increase in the surface-to-volume ratio of nano-forms of nutrients and their suitability for foliar application, where environmental losses are further reduced. Nanostructured fertilizers can also improve nutrient use efficiency through strategies such as targeted distribution and progressive or controlled-release as they can precisely release their active molecules in response to environmental cues and biological demands. Recent research shows nanofertilizers can increase agricultural productivity by speeding up seed germination, seedling growth, photosynthetic activity, nitrogen metabolism, and carbohydrate and protein synthesis. The potential agricultural benefits of nanofertilizers, their modes of action, and the fate of nanomaterials in soil are all discussed in this book. It also covers nanofertilizer formulation and delivery, applications, uptake, translocation, and their fate in plants, as well as their impact on plant physiology and metabolism. Nutrient nanoformulation is a valuable method that has the potential to alter the agricultural sector and provide solutions to current and future concerns for sustainable and climate-sensitive crops
Nano- and Nanohybrid Fungicides: Novel Applications in Plant Pathology addresses nanofungicides and the opportunities that nano-agrochemicals can provide. Organized into three parts, this book addresses the synthesis and formulation of nanofungicides and nanohybrid fungicides, as well as their sensing, degradation, and commercialization. Furthermore, the book assesses the potential hazards and safety of nanofungicdes for agroecosytems, in addition to startup, patents, regulatory concerns, and prospects. Plant scientists, plant pathologist, agriculture and food scientists, and professionals and students working in related fields will all benefit from this timely resource. - Explains the synthesis or biosynthesis of nanofungicides - Determines the active ingredients of nanofungicides - Describes the applications of nanofungicides in plant disease control and crop protection - Explores the mechanisms of antifungal activity
Metal nanoparticles, ranging from 1 nanometer (nm) to 100 nm, possess unique physical, chemical, and biological properties, driving significant scientific and technological advancements. Traditional methods for producing these nanoparticles, such as physical and chemical synthesis, are often costly, time-consuming, and hazardous to health. In response, green synthesis has gained popularity due to its non-toxic, eco-friendly, and cost-effective approach. This method uses plant materials and microorganisms to produce stable, biocompatible nanoparticles. As a result, green synthesis is becoming a promising alternative for the development of metal nanoparticles. Synthesizing and Characterizing Plant-Mediated Biocompatible Metal Nanoparticles describes the domain of synthesizing and characterizing plant-mediated biocompatible metal nanoparticles, exploring numerous applications from fostering a sustainable environment to diverse nanotechnological applications such as drug discovery, cancer treatment, and beyond. It further addresses a broad spectrum of societal and technological challenges and related issues, thereby assisting stakeholders in making informed decisions within this rapidly evolving field in our dynamic and contemporary scientific society. Covering topics such as antibiotics, nano-fertilizer, and wastewater treatment, this book is an excellent resource for policymakers, industry professionals, academicians, researchers, graduate and postgraduate students, and more.
The book entitled ‘Nanophytopathology’ discusses the need for alternative technologies particularly smart nanotechnological tools including nanobiosensor in the detection of plant diseases, delivery of fungicides/pesticides, and therapy for the diseases caused by plant pathogens and pests. The use of nanomaterials will minimize the huge amount of application of pesticides and fungicides thereby reducing environmental pollution. This technology is eco-friendly, economically viable, and useful for sustainable crop production. The book encompasses chapters written by experienced experts in respective fields, which provide up-to-date knowledge about pathogen/pest control using nanotechnology. It will be essential reading for post-graduate students and researchers, agriculture scientists, nanotechnologists, microbiologists, green chemistry experts, and biotechnologists.
Nanofertilizer Delivery, Effects and Application Methods explores the science of nutrient nanoformulation, a potential tool toward sustainable and climate-sensitive crops.Wide-spread use of chemical fertilizers has been shown to causes significant damage to soil structure, mineral cycles, soil microbial flora, plants, and creating human health risk both immediately and for future generations. Through methods that include targeted distribution, and gradual or controlled release, nanostructured fertilizers can improve nutrient usage efficiency. According to recent studies, through environmental cues and biological demands, nano-fertilizers can respond to specifical challenges, and boost agricultural yield by increasing the rate of seed germination, seedling growth, photosynthetic activity, nitrogen metabolism, and carbohydrate and protein synthesis. Nanofertilizer Delivery, Effects and Application Methods discusses the potential agricultural benefits of nanofertilizers from coverage of their formulation and delivery, to application, plant uptake, translocation, and destiny, and their overall effect on plant physiology and metabolism. This book is ideal for researchers in industry and academia. - Highlights types, uses, and advantages of a wide range and variety of nanofertilizers on agri-food sectors - Looks at current practices, their challenges, and future development opportunities - Includes methods and applications for real-world insights
This book focuses on the recent progress of nanotechnology with emphasis on the interaction between nanoparticles and plants on the cellular level. It is devoted to understanding the pathways of nanomaterials entry into plant cell and their influence on cellular organelle processes and influence on crop yield. It consists of 16 chapters grouped in 3 parts: Part I Cellular mechanisms, Part II Cellular macromolecules, and Part III Implications of nanomaterials. Chapters present the plant response to nanomaterial applications including morphological, physiochemical, and anatomical changes and their effect on plant growth and productivity. The book discusses the mechanisms of absorbance and translocation of nanoparticles and their interaction with the plant cellular biochemical compounds and organelles. It presents the current perspective of nanomaterials influence on cellular processes which include photosynthesis, photorespiration and pigment synthesis and accumulation. In addition, it provides current understanding of the impact of nanomaterials on cellular macromolecules including carbohydrates, lipids, nucleic acids, proteins, hormones, and antioxidant defense activities. Collectively, these processes and biochemical compounds have implications on crop yield. Chapters are written by globally recognized scientists and subjected to a rigorous review process to ensure quality presentation and scientific precision. Chapter begins with an introduction that covers similar contexts and includes a detailed discussion of the topic accompanied by high-quality color images, diagrams, and relevant details and concludes with recommendations for future study directions. Chapter "Impact of Nanomaterials on Plant Secondary Metabolism" is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Nanotechnology and Plant Disease Management explores the intersection of nanotechnology and agriculture. This book serves as a comprehensive exploration of the current state and future potential of nanoparticles in revolutionizing plant disease management within the realm of agriculture. This book elucidates the synthesis, characterization and judicious application of nanoparticles, providing a clear and accessible explanation of what nanomaterials are, how they are characterized, and their pivotal role in reshaping the plant disease management systems. It scrutinizes innovative strategies that influence the unique properties of nanoparticles to identify and monitor the presence of pathogens at early stages. The book also examines the limitations inherent in the use of nanomaterials for disease management in plants by critically evaluating both sides of the spectrum. This aims to provide a candid overview of the hurdles that must be overcome to unlock the full benefits of nanotechnology in this field. By pinpointing and understanding these obstacles, the current work aims to pave the way for effective strategies and solutions, ensuring the responsible and optimized application of nanomaterials for enhanced plant disease management. This in-depth examination serves as a cornerstone, providing readers with a profound understanding of the intricate processes involved in synthesis, characterization and utilizing nanomaterials for disease control. Nanotechnology and Plant Disease Management is a testament to the transformative potential of nanotechnology in agriculture. The authors invite readers to embark on this enlightening journey, exploring the intricate world of nanomaterials and their application in safeguarding the health and vitality of plants.