Download Free Controlled Release Fertilizers For Sustainable Agriculture Book in PDF and EPUB Free Download. You can read online Controlled Release Fertilizers For Sustainable Agriculture and write the review.

Controlled Release Fertilizers for Sustainable Agriculture provides a comprehensive examination of precision fertilizer applications using the 4-R approach—the right amount of fertilizer at the right time to the right plant at the correct stage of plant growth. This volume consolidates detailed information on each aspect of controlled release fertilizers, including up-to-date literature citations, the current market for controlled release fertilizers and patents. Presenting the tremendous advances in experimental and theoretical studies on sustainable agriculture and related areas, this book provides in-depth insight into state-of-the-art controlled release mechanisms of fertilizers, techniques, and their use in sustainable agriculture. Conventional release mechanisms have historically meant waste of fertilizers and the adverse effects of that waste on the environment. Controlled release delivery makes significant strides in enhancing fertilizer benefit to the target plant, while protecting the surrounding environment and increasing sustainability. - Presents cutting-edge interdisciplinary insights specifically focused on the controlled release of fertilizers - Explores the benefits and challenges of 4-R fertilizer use - Includes expertise from leading researchers in the fields of agriculture, polymer science, and nanotechnology working in industry, academics, government, and private research institutions across the globe - Presents the tremendous advances in experimental and theoretical studies on sustainable agriculture and related areas
Controlled Release Fertilizers for Sustainable Agriculture provides a comprehensive examination of precision fertilizer applications using the 4-R approach-the right amount of fertilizer at the right time to the right plant at the correct stage of plant growth. This volume consolidates detailed information on each aspect of controlled release fertilizers, including up-to-date literature citations, the current market for controlled release fertilizers and patents. Presenting the tremendous advances in experimental and theoretical studies on sustainable agriculture and related areas, this book provides in-depth insight into state-of-the-art controlled release mechanisms of fertilizers, techniques, and their use in sustainable agriculture. Conventional release mechanisms have historically meant waste of fertilizers and the adverse effects of that waste on the environment. Controlled release delivery makes significant strides in enhancing fertilizer benefit to the target plant, while protecting the surrounding environment and increasing sustainability. Presents cutting-edge interdisciplinary insights specifically focused on the controlled release of fertilizers Explores the benefits and challenges of 4-R fertilizer use Includes expertise from leading researchers in the fields of agriculture, polymer science, and nanotechnology working in industry, academics, government, and private research institutions across the globe Presents the tremendous advances in experimental and theoretical studies on sustainable agriculture and related areas
Smart Agrochemicals for Sustainable Agriculture proposes products that fulfill the need for chemicals that provide a sustainable delivery system for nutrients necessary to maximize the production of agricultural animals and plants while producing the smallest possible environmental footprint. This book addresses all aspects related to the production process, including chemical formulas, stability of formulations, and the application of the effect of its utilization. Over the past decade, biobased chemicals have received significant attention as candidate resource materials in fertilizers and agrochemicals production due to their renewability. Substitution of conventional raw materials with biobased requires a new approach towards the development of technology. On the other hand, the use of biobased chemicals, such as biostimulants, bioregulators and biofertilizers offers a new palette of products that are natural, thus their application does not pose an impact on the environment (residues) or cultivated plants. - Presents ideas for new products that provide appropriate nutrition while limiting environmental footprints - Includes a full range of the production process, from chemical formulas to establishing the stability of formulations, applications and effects - Offers a host of new products that are natural and whose applications do not negatively impact the environment nor cultivated plants
Sustainable agricultural practices are needed to provide food security for a growing global population. Food production is usually associated with high nutrient inputs in the form of mineral fertilizers. Since the beginning of agriculture, such practices have led to soil degradation and the release of environmental contaminants. In this Special Issue, we will focus on innovations in organic and inorganic fertilizer production. We welcome studies concerning new approaches for smart fertilizer development, including bioformulations with mineral particles, nanomaterials, and plant growth promoting microorganisms. We especially encourage authors taking advantage of ecological interactions to improve plant nutrient-use efficiency. Moreover, we would like to include contributions that focus on organic amendments to increase or propitiate the terrestrial C sequestration and stabilization, in order to contribute to mitigating climate change at the same time increasing food security by soil fertility, thus making win-win-win scenarios. Such techniques may concern, but are not limited to, innovative organic waste recycling procedures and new applications of mycorrhizae, rhizobioms, or free living soil bacteria and fungi.
This report presents the world nitrogen, phosphorus and potassium fertilizer medium-term supply and demand forecasts for the period 2017-2022. FAO, in collaboration with other members of the Fertilizer Outlook Expert Group dealing with fertilizer production, consumption and trade, provides forecasts of world and regional fertilizer supply, demand and potential balance.
This book includes twenty-one comprehensive chapters addressing various soil and crop management issues, including modern techniques in enhancing crop production in the era of climate change. There are a few case studies and experimental evidence about these production systems in specific locations. Particular focus is provided on the state-of-the-art of biotechnology, nanotechnology, and precision agriculture, as well as many other recent approaches in ensuring sustainable crop production. This book is useful for undergraduate and graduate students, teachers, and researchers, particularly in the fields of crop science, soil science, and agronomy.
This book ​presents an introduction to the concept and need of sustainable agriculture, the mechanisms of conventional and controlled release of pesticides, herbicides and plant hormones. It also contains the carriers which supply controlled release including polymers and nanoparticles. A full chapter is devoted to the theory and simulation aspects.
Global concern over the demerits of chemicals in agriculture has diverted the attention of researchers towards using the potential of PGPR in agriculture. This book contains many useful and important research papers pertaining to the use of bio-fertilizers and bio-fungicides for sustainable agriculture. This volume is presented in an easy-to-understand manner,with well-illustrated protocols on the production to commercialization of PGPR. The chapters on commercial potential, trade and regulatory issues among Asian countries are worthwhile additions. As such, this book will prove useful for students, researchers, teachers, and entrepreneurs in the area of PGPR and its allied fields.
Over the past decade, interest in plant biostimulants has been on the rise, compelled by the growing interest of researchers, extension specialists, private industries, and farmers in integrating these products in the array of environmentally friendly tools to secure improved crop performance, nutrient efficiency, product quality, and yield stability. Plant biostimulants include diverse organic and inorganic substances, natural compounds, and/or beneficial microorganisms such as humic acids, protein hydrolysates, seaweed and plant extracts, silicon, endophytic fungi like mycorrhizal fungi, and plant growth-promoting rhizobacteria belonging to the genera Azospirillum, Azotobacter, and Rhizobium. Other substances (e.g., chitosan and other biopolymers and inorganic compounds) can have biostimulant properties, but their classification within the group of biostimulants is still under consideration. Plant biostimulants are usually applied to high-value crops, mainly greenhouse crops, fruit trees and vines, open-field crops, flowers, and ornamentals to sustainably increase yield and product quality. The global biostimulant market is currently estimated at about $2.0 billion and is expected to reach $3.0 billion by 2021 at an annual growth rate of 13%. A growing interest in plant biostimulants from industries and scientists was demonstrated by the high number of published peer-reviewed articles, conferences, workshops, and symposia in the past ten years. This book compiles several original research articles, technology reports, methods, opinions, perspectives, and invited reviews and mini reviews dissecting the biostimulatory action of these natural compounds and substances and beneficial microorganisms on crops grown under optimal and suboptimal growing conditions (e.g., salinity, drought, nutrient deficiency and toxicity, heavy metal contaminations, waterlogging, and adverse soil pH conditions). Also included are contributions dealing with the effect as well as the molecular and physiological mechanisms of plant biostimulants on nutrient efficiency, product quality, and modulation of the microbial population both quantitatively and qualitatively. In addition, identification and understanding of the optimal method, time, rate of application and phenological stage for improving plant performance and resilience to stress as well as the best combinations of plant species/cultivar × environment × management practices are also reported. We strongly believe that high standard reflected in this compilation on the principles and practices of plant biostimulants will foster knowledge transfer among scientific communities, industries, and agronomists, and will enable a better understanding of the mode of action and application procedures of biostimulants in different cropping systems.
Nitrogen is the most important nutrient in agricultural practice because the availability of nitrogen from the soil is generally not enough to support crop yields. To maintain soil fertility, the application of organic matters and crop rotation have been practiced. Farmers can use convenient chemical nitrogen fertilizers to obtain high crop yields. However, the inappropriate use of nitrogen fertilizers causes environmental problems such as nitrate leaching, contamination in groundwater, and the emission of N2O gas. This book is divided into the following four sections: “Ecology and Environmental Aspects of Nitrogen in Agriculture”, “Nitrogen Fertilizers and Nitrogen Management in Agriculture”, “N Utilization and Metabolism in Crops”, “Plant-Microbe Interactions”.