Download Free Contributions To The Complexity Theory Of Finite Semigroups Book in PDF and EPUB Free Download. You can read online Contributions To The Complexity Theory Of Finite Semigroups and write the review.

The purpose of the Berkeley Workshop on Monoids was to give expository talks by the most qualified experts in the emerging main areas of monoid and semigroup theory including applications to theoretical computer science. This was supplemented with current research papers. The topics covered, in an accessible way for the mathematical and theoretical computer community, were: Kernels and expansions in semigroup theory; Implicit operations; Inverse monoids; Varieties of semigroups and universal algebra; Linear semigroups and monoids of Lie type; Monoids acting on tress; Synthesis theorem, regular semigroups, and applications; Type-II conjecture; Application to theoretical computer science and decision problems.
This comprehensive, encyclopedic text in four parts aims to give the reader — from the graduate student to the researcher/practitioner — a detailed understanding of modern finite semigroup theory, focusing in particular on advanced topics on the cutting edge of research. The q-theory of Finite Semigroups presents important techniques and results, many for the first time in book form, thereby updating and modernizing the semigroup theory literature.
This book constitutes the refereed proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer Science, STACS 2000, held in Lille, France in February 2000. The 51 revised full papers presented together with the three invited papers were carefully reviewed and selected from a total of 146 submissions on the basis of some 700 reviewers' reports. The papers address fundamental issues from all current areas of theoretical computer science including algorithms, data structures, automata, formal languages, complexity, verification, logic, cryptography, graph theory, optimization, etc.
This first text on the subject provides a comprehensive introduction to the representation theory of finite monoids. Carefully worked examples and exercises provide the bells and whistles for graduate accessibility, bringing a broad range of advanced readers to the forefront of research in the area. Highlights of the text include applications to probability theory, symbolic dynamics, and automata theory. Comfort with module theory, a familiarity with ordinary group representation theory, and the basics of Wedderburn theory, are prerequisites for advanced graduate level study. Researchers in algebra, algebraic combinatorics, automata theory, and probability theory, will find this text enriching with its thorough presentation of applications of the theory to these fields. Prior knowledge of semigroup theory is not expected for the diverse readership that may benefit from this exposition. The approach taken in this book is highly module-theoretic and follows the modern flavor of the theory of finite dimensional algebras. The content is divided into 7 parts. Part I consists of 3 preliminary chapters with no prior knowledge beyond group theory assumed. Part II forms the core of the material giving a modern module-theoretic treatment of the Clifford –Munn–Ponizovskii theory of irreducible representations. Part III concerns character theory and the character table of a monoid. Part IV is devoted to the representation theory of inverse monoids and categories and Part V presents the theory of the Rhodes radical with applications to triangularizability. Part VI features 3 chapters devoted to applications to diverse areas of mathematics and forms a high point of the text. The last part, Part VII, is concerned with advanced topics. There are also 3 appendices reviewing finite dimensional algebras, group representation theory, and Möbius inversion.
This volume contains survey papers by the invited speakers at the Conference on Semigroup Theory and Its Applications which took place at Tulane University in April, 1994. The authors represent the leading areas of research in semigroup theory and its applications, both to other areas of mathematics and to areas outside mathematics. Included are papers by Gordon Preston surveying Clifford's work on Clifford semigroups and by John Rhodes tracing the influence of Clifford's work on current semigroup theory. Notable among the areas of application are the paper by Jean-Eric Pin on applications of other areas of mathematics to semigroup theory and the paper by the editors on an application of semigroup theory to theoretical computer science and mathematical logic. All workers in semigroup theory will find this volume invaluable.
Contains five short articles about Roger Lyndon and his contributions to mathematics, as well as twenty-seven invited research papers in combinatorial group theory and closely related areas. Several of the articles featured in this work fall into subfields of combinatorial group theory, areas in which much of the initial work was done by Lyndon.
Automata, Languages, and Machines