Download Free Contributions To Geometry Book in PDF and EPUB Free Download. You can read online Contributions To Geometry and write the review.

During the time from June 28-July 1, 1978, representatives of different branches of geometry met in Siegen for discussion of and reports on current problems. In particular, the survey lectures, presented by well known geometers, gave nonspecialists the welcome opportunity to learn about the questions posed, the methods used and the results obtained in different areas of the field of geometry. The research areas represented at the meeting in Siegen are reflected in the list of participants and their contributions: Ranging from geometric convexity and related topics to differential geometry and kinematics. The foundations of geometry, an area well established in Germany, was also represented. It is a pleasure to thank all the lecturers as well as other participants in the Geometry Symposium for their contribution to the success of the meeting. We also thank the "Minister fUr Wissenschaft und Forschung des Landes Nordrhein-Westfalen" and the University of Siegen for their generous support which helped make the Symposium so successful. In order to make the contributions and results of the Symposium accessible to the general public, the publication of a proceedings volume was planned. The idea was to give a summary of a wide spectrum of research in geometr- through survey articles and original research papers.
"The book includes introductions, terminology and biographical notes, bibliography, and an index and glossary" --from book jacket.
Ptolemy's Almagest is one of the most influential scientific works in history. A masterpiece of technical exposition, it was the basic textbook of astronomy for more than a thousand years, and still is the main source for our knowledge of ancient astronomy. This translation, based on the standard Greek text of Heiberg, makes the work accessible to English readers in an intelligible and reliable form. It contains numerous corrections derived from medieval Arabic translations and extensive footnotes that take account of the great progress in understanding the work made in this century, due to the discovery of Babylonian records and other researches. It is designed to stand by itself as an interpretation of the original, but it will also be useful as an aid to reading the Greek text.
The present volume provides a fascinating overview of geometrical ideas and perceptions from the earliest cultures to the mathematical and artistic concepts of the 20th century. It is the English translation of the 3rd edition of the well-received German book “5000 Jahre Geometrie,” in which geometry is presented as a chain of developments in cultural history and their interaction with architecture, the visual arts, philosophy, science and engineering. Geometry originated in the ancient cultures along the Indus and Nile Rivers and in Mesopotamia, experiencing its first “Golden Age” in Ancient Greece. Inspired by the Greek mathematics, a new germ of geometry blossomed in the Islamic civilizations. Through the Oriental influence on Spain, this knowledge later spread to Western Europe. Here, as part of the medieval Quadrivium, the understanding of geometry was deepened, leading to a revival during the Renaissance. Together with parallel achievements in India, China, Japan and the ancient American cultures, the European approaches formed the ideas and branches of geometry we know in the modern age: coordinate methods, analytical geometry, descriptive and projective geometry in the 17th an 18th centuries, axiom systems, geometry as a theory with multiple structures and geometry in computer sciences in the 19th and 20th centuries. Each chapter of the book starts with a table of key historical and cultural dates and ends with a summary of essential contents of geometr y in the respective era. Compelling examples invite the reader to further explore the problems of geometry in ancient and modern times. The book will appeal to mathematicians interested in Geometry and to all readers with an interest in cultural history. From letters to the authors for the German language edition I hope it gets a translation, as there is no comparable work. Prof. J. Grattan-Guinness (Middlesex University London) "Five Thousand Years of Geometry" - I think it is the most handsome book I have ever seen from Springer and the inclusion of so many color plates really improves its appearance dramatically! Prof. J.W. Dauben (City University of New York) An excellent book in every respect. The authors have successfully combined the history of geometry with the general development of culture and history. ... The graphic design is also excellent. Prof. Z. Nádenik (Czech Technical University in Prague)
Preface of the Editors Ce volume prend sa source dans le Colloque en l'honneur de Pierre Dolbeault, organise a l'occasion de son depart a la retraite, a !'initiative des Universites de Paris 6 et de Poitiers. Ce colloque, consacre a l' Analyse Complexe et a la Geometrie Analytique, s'est tenu a Paris, sur le campus de l'Universite Pierreet Marie Curie, du 23 au 26 Juin 1992.11 areuni autour de ces themes une centaine de congressistes, dont de nombreux mathematiciens etrangers (Allemagne, Argentine, Canada, Etats-Unis, Islande, Italie, Pologne, Roumanie, Russie, Suede). Nous avons souhaite prolanger cet hommage par la publication d'un volume dedie a Pierre Dolbeault. Le present recueil d'articles ne constitue pas strictement les actes du Colloque. Nous avons voulu qu'il rassemble uniquement des articles originaux ou synthetiques, qui illustrent l' ceuvre scientifique de Pierre Dolbeault a travers les themes abordes ou la personnalite de leurs auteurs. Nous remercions les conferenciers qui ont bien voulu contribuer a cet ouvrage, et Klas Diederich de l'avoir accueilli dans la collection "Aspects of Mathematics" qu'il dirige. Au nom du Comite d'Organisation du Colloque (C. Laurent-Thiebaut, J. Le Potier, J.B. Poly, J.P. Vigue et nous-memes), nous remercions les institutions qui nous ont apporte leur aide financiere et materielle: les Universites Paris 6 et de Poitiers, la Direction de la Recherche et des Etudes Doctorales, le Centre National de la Recherche Scientifique et le Ministere de la Recherche et de la Technologie.
The volume reports on interdisciplinary discussions and interactions between theoretical research and practical studies on geometric structures and their applications in architecture, the arts, design, education, engineering, and mathematics. These related fields of research can enrich each other and renew their mutual interest in these topics through networks of shared inspiration, and can ultimately enhance the quality of geometry and graphics education. Particular attention is dedicated to the contributions that women have made to the scientific community and especially mathematics. The book introduces engineers, architects and designers interested in computer applications, graphics and geometry to the latest advances in the field, with a particular focus on science, the arts and mathematics education.
This small book, translated into English for the first time, has long been a unique place to find classical results from geometry, such as Pythagoras' theorem, the nine-point circle, Morley's triangle, and many other subjects. In addition, this book contains recent, geometric theorems which have been obtained over the past years. There are 27 independent chapters on a wide range of topics in elementary plane Euclidean geometry, at a level just beyond what is usually taught in a good high school or college geometry course. The selection of topics is intelligent, varied, and stimulating, and the author provides many thought-provoking ideas.
Charles Lutwidge Dodgson is best known for his 'Alice' books, Alice's Adventures in Wonderland and Through the Looking-Glass, written under his pen name of Lewis Carroll. Yet, whilst lauded for his work in children's fiction and his pioneering work in the world of Victorian photography, his everyday job was a lecturer in Mathematics at Christ Church, Oxford University. The Mathematical World of Charles L. Dodgson (Lewis Carroll) explores the academic background behind this complex individual, outlining his mathematical life, describing his writings in geometry, algebra, logic, the theory of voting, and recreational mathematics, before going on to discuss his mathematical legacy. This is the first academic work that collects the research on Dodgson's wide-ranging mathematical achievements into a single practical volume. Much material appears here for the first time, such as Dodgson's personal letters and drawings, as well as the results of recent investigations into the life and work of Dodgson. Complementing this are many illustrations, both historical and explanatory, as well as a full mathematical bibliography of Dodgson's mathematical publications.
This book offers a unique opportunity to understand the essence of one of the great thinkers of western civilization. A guided reading of Euclid's Elements leads to a critical discussion and rigorous modern treatment of Euclid's geometry and its more recent descendants, with complete proofs. Topics include the introduction of coordinates, the theory of area, history of the parallel postulate, the various non-Euclidean geometries, and the regular and semi-regular polyhedra.
Alfred Tarski (1901–1983) was a renowned Polish/American mathematician, a giant of the twentieth century, who helped establish the foundations of geometry, set theory, model theory, algebraic logic and universal algebra. Throughout his career, he taught mathematics and logic at universities and sometimes in secondary schools. Many of his writings before 1939 were in Polish and remained inaccessible to most mathematicians and historians until now. This self-contained book focuses on Tarski’s early contributions to geometry and mathematics education, including the famous Banach–Tarski paradoxical decomposition of a sphere as well as high-school mathematical topics and pedagogy. These themes are significant since Tarski’s later research on geometry and its foundations stemmed in part from his early employment as a high-school mathematics teacher and teacher-trainer. The book contains careful translations and much newly uncovered social background of these works written during Tarski’s years in Poland. Alfred Tarski: Early Work in Poland serves the mathematical, educational, philosophical and historical communities by publishing Tarski’s early writings in a broadly accessible form, providing background from archival work in Poland and updating Tarski’s bibliography. A list of errata can be found on the author Smith’s personal webpage.