Download Free Contributions To Automorphic Forms Geometry And Number Theory Book in PDF and EPUB Free Download. You can read online Contributions To Automorphic Forms Geometry And Number Theory and write the review.

In Contributions to Automorphic Forms, Geometry, and Number Theory, Haruzo Hida, Dinakar Ramakrishnan, and Freydoon Shahidi bring together a distinguished group of experts to explore automorphic forms, principally via the associated L-functions, representation theory, and geometry. Because these themes are at the cutting edge of a central area of modern mathematics, and are related to the philosophical base of Wiles' proof of Fermat's last theorem, this book will be of interest to working mathematicians and students alike. Never previously published, the contributions to this volume expose the reader to a host of difficult and thought-provoking problems. Each of the extraordinary and noteworthy mathematicians in this volume makes a unique contribution to a field that is currently seeing explosive growth. New and powerful results are being proved, radically and continually changing the field's make up. Contributions to Automorphic Forms, Geometry, and Number Theory will likely lead to vital interaction among researchers and also help prepare students and other young mathematicians to enter this exciting area of pure mathematics. Contributors: Jeffrey Adams, Jeffrey D. Adler, James Arthur, Don Blasius, Siegfried Boecherer, Daniel Bump, William Casselmann, Laurent Clozel, James Cogdell, Laurence Corwin, Solomon Friedberg, Masaaki Furusawa, Benedict Gross, Thomas Hales, Joseph Harris, Michael Harris, Jeffrey Hoffstein, Hervé Jacquet, Dihua Jiang, Nicholas Katz, Henry Kim, Victor Kreiman, Stephen Kudla, Philip Kutzko, V. Lakshmibai, Robert Langlands, Erez Lapid, Ilya Piatetski-Shapiro, Dipendra Prasad, Stephen Rallis, Dinakar Ramakrishnan, Paul Sally, Freydoon Shahidi, Peter Sarnak, Rainer Schulze-Pillot, Joseph Shalika, David Soudry, Ramin Takloo-Bigash, Yuri Tschinkel, Emmanuel Ullmo, Marie-France Vignéras, Jean-Loup Waldspurger.
The theory of automorphic forms has seen dramatic developments in recent years. In particular, important instances of Langlands functoriality have been established. This volume presents three weeks of lectures from the IAS/Park City Mathematics Institute Summer School on automorphic forms and their applications. It addresses some of the general aspects of automorphic forms, as well as certain recent advances in the field. The book starts with the lectures of Borel on the basic theory of automorphic forms, which lay the foundation for the lectures by Cogdell and Shahidi on converse theorems and the Langlands-Shahidi method, as well as those by Clozel and Li on the Ramanujan conjectures and graphs. The analytic theory of GL(2)-forms and $L$-functions are the subject of Michel's lectures, while Terras covers arithmetic quantum chaos. The volume also includes a chapter by Vogan on isolated unitary representations, which is related to the lectures by Clozel. This volume is recommended for independent study or an advanced topics course. It is suitable for graduate students and researchers interested in automorphic forms and number theory. the Institute for Advanced Study/Park City Mathematics Institute. Members of the Mathematical Association of America (MAA) and the National Council of Teachers of Mathematics (NCTM) receive a 20% discount from list price.
This volume contains contributions of principal speakers of the symposium on geometry and analysis of automorphic forms of several variables, held in September 2009 at Tokyo, Japan, in honor of Takayuki Oda''s 60th birthday. It presents both research and survey articles in the fields that are the main themes of his work. The volume may serve as a guide to developing areas as well as a resource for researchers who seek a broader view and for students who are beginning to explore automorphic form.
Robert A. Rankin, one of the world's foremost authorities on modular forms and a founding editor of The Ramanujan Journal, died on January 27, 2001, at the age of 85. Rankin had broad interests and contributed fundamental papers in a wide variety of areas within number theory, geometry, analysis, and algebra. To commemorate Rankin's life and work, the editors have collected together 25 papers by several eminent mathematicians reflecting Rankin's extensive range of interests within number theory. Many of these papers reflect Rankin's primary focus in modular forms. It is the editors' fervent hope that mathematicians will be stimulated by these papers and gain a greater appreciation for Rankin's contributions to mathematics. This volume would be an inspiration to students and researchers in the areas of number theory and modular forms.
This book presents a collection of carefully refereed research articles and lecture notes stemming from the Conference "Automorphic Forms and L-Functions", held at the University of Heidelberg in 2016. The theory of automorphic forms and their associated L-functions is one of the central research areas in modern number theory, linking number theory, arithmetic geometry, representation theory, and complex analysis in many profound ways. The 19 papers cover a wide range of topics within the scope of the conference, including automorphic L-functions and their special values, p-adic modular forms, Eisenstein series, Borcherds products, automorphic periods, and many more.
Automorphic forms are one of the central topics of analytic number theory. In fact, they sit at the confluence of analysis, algebra, geometry, and number theory. In this book, Henryk Iwaniec once again displays his penetrating insight, powerful analytic techniques, and lucid writing style. The first edition of this book was an underground classic, both as a textbook and as a respected source for results, ideas, and references. Iwaniec treats the spectral theory of automorphic forms as the study of the space of $L^2$ functions on the upper half plane modulo a discrete subgroup. Key topics include Eisenstein series, estimates of Fourier coefficients, Kloosterman sums, the Selberg trace formula and the theory of small eigenvalues. Henryk Iwaniec was awarded the 2002 Cole Prize for his fundamental contributions to number theory.
Automorphic Forms and Geometry of Arithmetic Varieties deals with the dimension formulas of various automorphic forms and the geometry of arithmetic varieties. The relation between two fundamental methods of obtaining dimension formulas (for cusp forms), the Selberg trace formula and the index theorem (Riemann-Roch's theorem and the Lefschetz fixed point formula), is examined. Comprised of 18 sections, this volume begins by discussing zeta functions associated with cones and their special values, followed by an analysis of cusps on Hilbert modular varieties and values of L-functions. The reader is then introduced to the dimension formula of Siegel modular forms; the graded rings of modular forms in several variables; and Selberg-Ihara's zeta function for p-adic discrete groups. Subsequent chapters focus on zeta functions of finite graphs and representations of p-adic groups; invariants and Hodge cycles; T-complexes and Ogata's zeta zero values; and the structure of the icosahedral modular group. This book will be a useful resource for mathematicians and students of mathematics.
This volume contains the proceedings of the conference Automorphic Forms and Related Geometry: Assessing the Legacy of I.I. Piatetski-Shapiro, held from April 23-27, 2012, at Yale University, New Haven, CT. Ilya I. Piatetski-Shapiro, who passed away on 21 February 2009, was a leading figure in the theory of automorphic forms. The conference attempted both to summarize and consolidate the progress that was made during Piatetski-Shapiro's lifetime by him and a substantial group of his co-workers, and to promote future work by identifying fruitful directions of further investigation. It was organized around several themes that reflected Piatetski-Shapiro's main foci of work and that have promise for future development: functoriality and converse theorems; local and global -functions and their periods; -adic -functions and arithmetic geometry; complex geometry; and analytic number theory. In each area, there were talks to review the current state of affairs with special attention to Piatetski-Shapiro's contributions, and other talks to report on current work and to outline promising avenues for continued progress. The contents of this volume reflect most of the talks that were presented at the conference as well as a few additional contributions. They all represent various aspects of the legacy of Piatetski-Shapiro.