Download Free Continuum Mechanics And Linear Elasticity Book in PDF and EPUB Free Download. You can read online Continuum Mechanics And Linear Elasticity and write the review.

This is an intermediate book for beginning postgraduate students and junior researchers, and offers up-to-date content on both continuum mechanics and elasticity. The material is self-contained and should provide readers sufficient working knowledge in both areas. Though the focus is primarily on vector and tensor calculus (the so-called coordinate-free approach), the more traditional index notation is used whenever it is deemed more sensible. With the increasing demand for continuum modeling in such diverse areas as mathematical biology and geology, it is imperative to have various approaches to continuum mechanics and elasticity. This book presents these subjects from an applied mathematics perspective. In particular, it extensively uses linear algebra and vector calculus to develop the fundamentals of both subjects in a way that requires minimal use of coordinates (so that beginning graduate students and junior researchers come to appreciate the power of the tensor notation).
This applications-oriented introduction fills an important gap in the field of solid mechanics. Offering a thorough grounding in the tensor-based theory of elasticity for courses in mechanical, civil, materials or aeronautical engineering, it allows students to apply the basic notions of mechanics to such important topics as stress analysis. Further, they will also acquire the necessary background for more advanced work in elasticity, plasticity, shell theory, composite materials and finite element mechanics. This second edition features new chapters on the bending of thin plates, time-dependent effects, and strength and failure criteria.
This augmented and updated fourth edition introduces a new complement of computational tools and examples for each chapter and continues to provide a grounding in the tensor-based theory of elasticity for students in mechanical, civil, aeronautical and biomedical engineering and materials and earth science. Professor Gould’s proven approach allows faculty to introduce this subject early on in an educational program, where students are able to understand and apply the basic notions of mechanics to stress analysis and move on to advanced work in continuum mechanics, plasticity, plate and shell theory, composite materials and finite element mechanics. With the introductory material on the use of MATLAB, students can apply this modern computational tool to solve classic elasticity problems. The detailed solutions of example problems using both analytical derivations and computational tools helps student to grasp the essence of elasticity and practical skills of applying the basic mechanics theorem.
Most books on continuum mechanics focus on elasticity and fluid mechanics. But whether student or practicing professional, modern engineers need a more thorough treatment to understand the behavior of the complex materials and systems in use today. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity offers a complete tour of the subject that includes not only elasticity and fluid mechanics but also covers plasticity, viscoelasticity, and the continuum model for fatigue and fracture mechanics. In addition to a broader scope, this book also supplies a review of the necessary mathematical tools and results for a self-contained treatment. The author provides finite element formulations of the equations encountered throughout the chapters and uses an approach with just the right amount of mathematical rigor without being too theoretical for practical use. Working systematically from the continuum model for the thermomechanics of materials, coverage moves through linear and nonlinear elasticity using both tensor and matrix notation, plasticity, viscoelasticity, and concludes by introducing the fundamentals of fracture mechanics and fatigue of metals. Requisite mathematical tools appear in the final chapter for easy reference. Continuum Mechanics: Elasticity, Plasticity, Viscoelasticity builds a strong understanding of the principles, equations, and finite element formulations needed to solve real engineering problems.
This book is intended for researchers, engineers and students in solid mechanics, materials science and physics who are interested in using the power of modern computing to solve a wide variety of problems of both practical and fundamental significance in elasticity. Extensive use of Mathematica in the book makes available to the reader a range of recipes that can be readily adjusted to match particular tastes or requirements, to visualize solutions, and to carry out symbolic and numerical analysis and optimization.
This introductory graduate text is a unified treatment of the major concepts of Solid Mechanics for beginning graduate students in the many branches of engineering. Major topics are elasticity, viscoelasticity, plasticity, fracture, and fatigue. The book also has chapters on thermoelasticity, chemoelasticity, poroelasticity and piezoelectricity.
This book, first published in 2007, introduces key ideas and principles in the theory of elasticity with the help of symbolic computation. Differential and integral operators on vector and tensor fields of displacements, strains and stresses are considered on a consistent and rigorous basis with respect to curvilinear orthogonal coordinate systems. As a consequence, vector and tensor objects can be manipulated readily, and fundamental concepts can be illustrated and problems solved with ease. The method is illustrated using a variety of plane and three-dimensional elastic problems. General theorems, fundamental solutions, displacements and stress potentials are presented and discussed. The Rayleigh-Ritz method for obtaining approximate solutions is introduced for elastostatic and spectral analysis problems. Containing more than 60 exercises and solutions in the form of Mathematica notebooks that accompany every chapter, the reader can learn and master the techniques while applying them to a large range of practical and fundamental problems.
This publication is aimed at students, teachers, and researchers of Continuum Mechanics and focused extensively on stating and developing Initial Boundary Value equations used to solve physical problems. With respect to notation, the tensorial, indicial and Voigt notations have been used indiscriminately. The book is divided into twelve chapters with the following topics: Tensors, Continuum Kinematics, Stress, The Objectivity of Tensors, The Fundamental Equations of Continuum Mechanics, An Introduction to Constitutive Equations, Linear Elasticity, Hyperelasticity, Plasticity (small and large deformations), Thermoelasticity (small and large deformations), Damage Mechanics (small and large deformations), and An Introduction to Fluids. Moreover, the text is supplemented with over 280 figures, over 100 solved problems, and 130 references.
This best-selling textbook presents the concepts of continuum mechanics in a simple yet rigorous manner. It introduces the invariant form as well as the component form of the basic equations and their applications to problems in elasticity, fluid mechanics and heat transfer, and offers a brief introduction to linear viscoelasticity. The book is ideal for advanced undergraduates and graduate students looking to gain a strong background in the basic principles common to all major engineering fields, and for those who will pursue further work in fluid dynamics, elasticity, plates and shells, viscoelasticity, plasticity, and interdisciplinary areas such as geomechanics, biomechanics, mechanobiology and nanoscience. The book features derivations of the basic equations of mechanics in invariant (vector and tensor) form and specification of the governing equations to various co-ordinate systems, and numerous illustrative examples, chapter summaries and exercise problems. This second edition includes additional explanations, examples and problems.
The mathematical framework behind the theory is developed in detail, with the assumptions behind the eventual linearization made clear, so that the reader will be adequately prepared for further studies in continuum mechanics, nonlinear elasticity, inelasticity, fracture mechanics and/or finite elements. Prior to linearization, configurations and general measure of strain and stress are discussed. A modern treatment of the theory of tensors and tensor calculus is used. General curvilinear coordinates are described in an appendix.