Download Free Contents Of Contemporary Mathematical Journals Book in PDF and EPUB Free Download. You can read online Contents Of Contemporary Mathematical Journals and write the review.

Topics in Contemporary Mathematical Analysis and Applications encompasses several contemporary topics in the field of mathematical analysis, their applications, and relevancies in other areas of research and study. The readers will find developments concerning the topics presented to a reasonable extent with various new problems for further study. Each chapter carefully presents the related problems and issues, methods of solutions, and their possible applications or relevancies in other scientific areas. Aims at enriching the understanding of methods, problems, and applications Offers an understanding of research problems by presenting the necessary developments in reasonable details Discusses applications and uses of operator theory, fixed-point theory, inequalities, bi-univalent functions, functional equations, and scalar-objective programming, and presents various associated problems and ways to solve such problems This book is written for individual researchers, educators, students, and department libraries.
This volume contains the proceedings of the Eighth International Conference on Scientific Computing and Applications, held April 1-4, 2012, at the University of Nevada, Las Vegas. The papers in this volume cover topics such as finite element methods, multiscale methods, finite difference methods, spectral methods, collocation methods, adaptive methods, parallel computing, linear solvers, applications to fluid flow, nano-optics, biofilms, finance, magnetohydrodynamics flow, electromagnetic waves, the fluid-structure interaction problem, and stochastic PDEs. This book will serve as an excellent reference for graduate students and researchers interested in scientific computing and its applications.
The year 2018 marked the 75th anniversary of the founding of Mathematics of Computation, one of the four primary research journals published by the American Mathematical Society and the oldest research journal devoted to computational mathematics. To celebrate this milestone, the symposium “Celebrating 75 Years of Mathematics of Computation” was held from November 1–3, 2018, at the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The sixteen papers in this volume, written by the symposium speakers and editors of the journal, include both survey articles and new contributions. On the discrete side, there are four papers covering topics in computational number theory and computational algebra. On the continuous side, there are twelve papers covering topics in machine learning, high dimensional approximations, nonlocal and fractional elliptic problems, gradient flows, hyperbolic conservation laws, Maxwell's equations, Stokes's equations, a posteriori error estimation, and iterative methods. Together they provide a snapshot of significant achievements in the past quarter century in computational mathematics and also in important current trends.
This volume aims to highlight trends and important directions of research in orthogonal polynomials, q-series, and related topics in number theory, combinatorics, approximation theory, mathematical physics, and computational and applied harmonic analysis. This collection is based on the invited lectures by well-known contributors from the International Conference on Orthogonal Polynomials and q-Series, that was held at the University of Central Florida in Orlando, on May 10-12, 2015. The conference was dedicated to Professor Mourad Ismail on his 70th birthday.The editors strived for a volume that would inspire young researchers and provide a wealth of information in an engaging format. Theoretical, combinatorial and computational/algorithmic aspects are considered, and each chapter contains many references on its topic, when appropriate.
A collection of articles showcasing the achievements of young Russian researchers in combinatorial and algebraic geometry and topology.
"This volume contains the proceedings of the AMS Special Session on Noncommutative Birational Geometry, Representations and Cluster Algebras, held from January 6-7, 2012, in Boston, MA. The papers deal with various aspects of noncommutative birational geometry and related topics, focusing mainly on structure and representations of quantum groups and algebras, braided algebras, rational series in free groups, Poisson brackets on free algebras, and related problems in combinatorics. This volume is useful for researchers and graduate students in mathematics and mathematical physics who want to be introduced to different areas of current research in the new area of noncommutative algebra and geometry."--Publisher's website.
Use of Mathematical Literature discusses the bibliographic concerns of mathematical literature. The book is comprised of 14 chapters that cover characteristics of mathematical literature and provide reviews of some of the major literature in various mathematical fields. The text first discusses the role of the literature in mathematics, and then proceeds to tackling major organizations, journals, and reference materials. Next, the book provides critical accounts of the major literature in various mathematical fields, such as combinatorics, topology, and mathematical programming. The book will be of great use to students, practitioners, and researchers of mathematics. Other profession handling math literature, such as teachers, librarians, and translators will also find this book invaluable.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest. A panoramic survey of the vast spectrum of modern and contemporary mathematics and the new philosophical possibilities they suggest, this book gives the inquisitive non-specialist an insight into the conceptual transformations and intellectual orientations of modern and contemporary mathematics. The predominant analytic approach, with its focus on the formal, the elementary and the foundational, has effectively divorced philosophy from the real practice of mathematics and the profound conceptual shifts in the discipline over the last century. The first part discusses the specificity of modern (1830–1950) and contemporary (1950 to the present) mathematics, and reviews the failure of mainstream philosophy of mathematics to address this specificity. Building on the work of the few exceptional thinkers to have engaged with the “real mathematics” of their era (including Lautman, Deleuze, Badiou, de Lorenzo and Châtelet), Zalamea challenges philosophy's self-imposed ignorance of the “making of mathematics.” In the second part, thirteen detailed case studies examine the greatest creators in the field, mapping the central advances accomplished in mathematics over the last half-century, exploring in vivid detail the characteristic creative gestures of modern master Grothendieck and contemporary creators including Lawvere, Shelah, Connes, and Freyd. Drawing on these concrete examples, and oriented by a unique philosophical constellation (Peirce, Lautman, Merleau-Ponty), in the third part Zalamea sets out the program for a sophisticated new epistemology, one that will avail itself of the powerful conceptual instruments forged by the mathematical mind, but which have until now remained largely neglected by philosophers.