Download Free Contemporarys Number Power Geometry Book in PDF and EPUB Free Download. You can read online Contemporarys Number Power Geometry and write the review.

This work examines the unique way in which Benedict de Spinoza (1632–77) combines two significant philosophical principles: that real existence requires causal power and that geometrical objects display exceptionally clearly how things have properties in virtue of their essences. Valtteri Viljanen argues that underlying Spinoza's psychology and ethics is a compelling metaphysical theory according to which each and every genuine thing is an entity of power endowed with an internal structure akin to that of geometrical objects. This allows Spinoza to offer a theory of existence and of action - human and non-human alike - as dynamic striving that takes place with the same kind of necessity and intelligibility that pertain to geometry. Viljanen's fresh and original study will interest a wide range of readers in Spinoza studies and early modern philosophy more generally.
This classic text explores the geometry of the triangle and the circle, concentrating on extensions of Euclidean theory, and examining in detail many relatively recent theorems. 1929 edition.
This volume completes the English adaptation of a classical Russian textbook in elementary Euclidean geometry. The 1st volume subtitled "Book I. Planimetry" was published in 2006 (ISBN 0977985202). This 2nd volume (Book II. Stereometry) covers solid geometry, and contains a chapter on vectors, foundations, and introduction in non-Euclidean geometry added by the translator. The book intended for high-school and college students, and their teachers. Includes 317 exercises, index, and bibliography.
Workbook with instructions and practice in working with fractions, decimals and percents in real-life math problems and a section of answers to problems.
Between the seventeenth and nineteenth centuries Japan was totally isolated from the West by imperial decree. During that time, a unique brand of homegrown mathematics flourished, one that was completely uninfluenced by developments in Western mathematics. People from all walks of life--samurai, farmers, and merchants--inscribed a wide variety of geometry problems on wooden tablets called sangaku and hung them in Buddhist temples and Shinto shrines throughout Japan. Sacred Mathematics is the first book published in the West to fully examine this tantalizing--and incredibly beautiful--mathematical tradition. Fukagawa Hidetoshi and Tony Rothman present for the first time in English excerpts from the travel diary of a nineteenth-century Japanese mathematician, Yamaguchi Kanzan, who journeyed on foot throughout Japan to collect temple geometry problems. The authors set this fascinating travel narrative--and almost everything else that is known about temple geometry--within the broader cultural and historical context of the period. They explain the sacred and devotional aspects of sangaku, and reveal how Japanese folk mathematicians discovered many well-known theorems independently of mathematicians in the West--and in some cases much earlier. The book is generously illustrated with photographs of the tablets and stunning artwork of the period. Then there are the geometry problems themselves, nearly two hundred of them, fully illustrated and ranging from the utterly simple to the virtually impossible. Solutions for most are provided. A unique book in every respect, Sacred Mathematics demonstrates how mathematical thinking can vary by culture yet transcend cultural and geographic boundaries.
Through a careful treatment of number theory and geometry, Number, Shape, & Symmetry: An Introduction to Number Theory, Geometry, and Group Theory helps readers understand serious mathematical ideas and proofs. Classroom-tested, the book draws on the authors’ successful work with undergraduate students at the University of Chicago, seventh to tenth grade mathematically talented students in the University of Chicago’s Young Scholars Program, and elementary public school teachers in the Seminars for Endorsement in Science and Mathematics Education (SESAME). The first half of the book focuses on number theory, beginning with the rules of arithmetic (axioms for the integers). The authors then present all the basic ideas and applications of divisibility, primes, and modular arithmetic. They also introduce the abstract notion of a group and include numerous examples. The final topics on number theory consist of rational numbers, real numbers, and ideas about infinity. Moving on to geometry, the text covers polygons and polyhedra, including the construction of regular polygons and regular polyhedra. It studies tessellation by looking at patterns in the plane, especially those made by regular polygons or sets of regular polygons. The text also determines the symmetry groups of these figures and patterns, demonstrating how groups arise in both geometry and number theory. The book is suitable for pre-service or in-service training for elementary school teachers, general education mathematics or math for liberal arts undergraduate-level courses, and enrichment activities for high school students or math clubs.
This new dictionary provides over 2,000 clear and concise entries on human geography, covering basic terms and concepts as well as biographies, organisations, and major periods and schools. Authoritative and accessible, this is a must-have for every student of human geography, as well as for professionals and interested members of the public.
The goal of this book is to explain, at the graduate student level, connections between tropical geometry and optimization. Building bridges between these two subject areas is fruitful in two ways. Through tropical geometry optimization algorithms become applicable to questions in algebraic geometry. Conversely, looking at topics in optimization through the tropical geometry lens adds an additional layer of structure. The author covers contemporary research topics that are relevant for applications such as phylogenetics, neural networks, combinatorial auctions, game theory, and computational complexity. This self-contained book grew out of several courses given at Technische Universität Berlin and elsewhere, and the main prerequisite for the reader is a basic knowledge in polytope theory. It contains a good number of exercises, many examples, beautiful figures, as well as explicit tools for computations using $texttt{polymake}$.
"The real world of adult math"--Cover
Each Number Power book targets a particular set of math skills with straightforward explanations, easy-to-follow, step-by-step instructions, real-life examples, and extensive reinforcement exercises.