Download Free Constraining Tev Scale Astrophysical Foregrounds For Dark Matter Searches With Hawc Book in PDF and EPUB Free Download. You can read online Constraining Tev Scale Astrophysical Foregrounds For Dark Matter Searches With Hawc and write the review.

"Astrophysical observations are central to the quest for new physics including the search for dark matter. The search is based on identifying potential deviations from the Standard Model in the cosmic-ray and the electromagnetic spectrum of astrophysical sources. The deviations could either be signatures of dark matter or have consequences for our understanding of known sources. The last decade of precision measurements from detectors in space, such as the Fermi Gamma-ray Space Telescope, and the Alpha Magnetic Spectrometer for detecting cosmic rays aboard the International Space Station, have identified certain "anomalies" or unexpected spectral features, that challenge the standard models of how cosmic rays are produced and propagate through the Galaxy. Examples include an unexpectedly hard spectrum of cosmic-ray antiprotons at energies above a few hundred GeV, and an unexplained excess of very-high-energy gamma rays from the Sun. An excess of cosmic-ray antiprotons and a hard spectrum of gamma rays from the Sun also feature in the predictions of various models of dark matter annihilation. However, without a complete understanding of the antiproton spectrum, and the production mechanisms of solar gamma rays, it is impossible to differentiate new physics from the standard astrophysical foreground flux of these particles. Measuring these fluxes at energies that extend into the TeV range is an observational challenge that we explore in this thesis. The High AltitudeWater Cherenkov (HAWC) Observatory is a wide field-of-view array that is currently the only detector capable of making high-statistics measurements of cosmic rays and gamma rays at multi-TeV energies. This work uses data from HAWC collected between 2014-2017 to constrain two unique fluxes at the TeV scale: antiprotons in Galactic cosmic rays, and gamma rays from the quiescent Sun - both relevant foregrounds for astrophysical searches for physics beyond the Standard Model. Cosmic rays in the inner solar system are subject to deflection by the magnetic fields of the Earth and the Sun, affecting the observed deficit or "shadow" of the Moon/Sun. Cosmic rays also interact with the Sun's atmosphere to produce a steady emission of gamma rays up to at least 200 GeV, though the exact underlying mechanism remains a puzzle. We present the strongest upper limits on the antiproton to proton ratio in TeV cosmic rays at ~1% using the Moon shadow as a momentum/ charge discriminant. We also discuss our search for excess gamma rays from the Sun above 1 TeV, and present the resulting implications for models of dark matter capture and annihilation in the Sun. Our results constrain the steady gamma-ray emission from the Sun up to a few times 10−12 TeV cm−2 s−1 at 1 TeV. For dark matter annihilation with long-lived mediators in the Sun, we present the strongest upper limits on dark matter-proton scattering cross section up to ~10−45 cm2, which is a potential improvement of four orders of magnitude compared to direct-detection experiments for dark matter mass of 1 TeV."--Pages xi-xii.
This book provides a comprehensive review of the methodologies and searches for dark matter (DM) annihilation signals using very-high-energy gamma rays (VHE, E > 100 GeV), utilizing data from current Imaging Atmospheric Cherenkov Telescopes (IACTs) in the pre-Cherenkov Telescope Array (CTA) era. It presents the state-of-the-art statistical analysis methods and theoretical models related to TeV DM, applied to data from the H.E.S.S. telescope array, which is currently the most sensitive IACT array for observing the Galactic Center (GC), where the brightest DM annihilation signals are expected. The authors delve into the astrophysics of VHE gamma-ray production through cosmic ray acceleration. They explain the Imaging Atmospheric Cherenkov technique, describe the H.E.S.S. array, and discuss possibilities for DM annihilation-induced gamma-ray spectra and DM distribution profiles. By employing advanced statistical methods, they search for weak signals in the GC region using the H.E.S.S. Inner Galaxy Survey dataset and address systematic uncertainties. The authors present and debate the most constraining results on TeV dark matter models. Finally, this book presents the sensitivity of current IACTs to DM annihilation signals using IGS mock datasets, accounting for systematic and instrumental uncertainties. Detection prospects for canonical TeV DM models, such as the Wino, Higgsino, and quintuplet, are discussed. Sensitivity benchmarks on indirect DM searches with IACTs using H.E.S.S. as an example are provided, setting the stage for future developments in the CTA era. It serves as a consolidated resource for graduate students and researchers, presenting methodologies that could lead to significant advancements in the quest to understand dark matter.
This thesis presents the results of indirect dark matter searches in the gamma-ray sky of the near Universe, as seen by the MAGIC Telescopes. The author has proposed and led the 160 hours long observations of the dwarf spheroidal galaxy Segue 1, which is the deepest survey of any such object by any Cherenkov telescope so far. Furthermore, she developed and completely characterized a new method, dubbed “Full Likelihood”, that optimizes the sensitivity of Cherenkov instruments for detection of gamma-ray signals of dark matter origin. Compared to the standard analysis techniques, this novel approach introduces a sensitivity improvement of a factor of two (i.e. it requires 4 times less observation time to achieve the same result). In addition, it allows a straightforward merger of results from different targets and/or detectors. By selecting the optimal observational target and combining its very deep exposure with the Full Likelihood analysis of the acquired data, the author has improved the existing MAGIC bounds to the dark matter properties by more than one order of magnitude. Furthermore, for particles more massive than a few hundred GeV, those are the strongest constraints from dwarf galaxies achieved by any gamma-ray instrument, both ground-based or space-borne alike.
This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the characteristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.
The steering committee was specifically asked to (1) provide an overview of the current state of astronomy and astrophysics science, and technology research in support of that science, with connections to other scientific areas where appropriate; (2) identify the most compelling science challenges and frontiers in astronomy and astrophysics, which shall motivate the committee’s strategy for the future; (3) develop a comprehensive research strategy to advance the frontiers of astronomy and astrophysics for the period 2022-2032 that will include identifying, recommending, and ranking the highest-priority research activities; (4) utilize and recommend decision rules, where appropriate, that can accommodate significant but reasonable deviations in the projected budget or changes in urgency precipitated by new discoveries or unanticipated competitive activities; (5) assess the state of the profession, including workforce and demographic issues in the field, identify areas of concern and importance to the community, and where possible, provide specific, actionable, and practical recommendations to the agencies and community to address these areas. This report proposes a broad, integrated plan for space- and ground-based astronomy and astrophysics for the decade 2023-2032. It also lays the foundations for further advances in the following decade.
Reviews the current state of knowledge of neutrino masses and the related question of neutrino oscillations. After an overview of the theory of neutrino masses and mixings, detailed accounts are given of the laboratory limits on neutrino masses, astrophysical and cosmological constraints on those masses, experimental results on neutrino oscillations, the theoretical interpretation of those results, and theoretical models of neutrino masses and mixings. The book concludes with an examination of the potential of long-baseline experiments. This is an essential reference text for workers in elementary-particle physics, nuclear physics, and astrophysics.
This timely book presents an overview of the galaxies within the Local Volume, including the Local Group and our closest neighbours, the Andromeda Galaxy and the Magellanic Clouds. Presented here are the latest results from radio, infrared and optical surveys as well as detailed multi-wavelength studies of individual galaxies. The book aims to provide a vibrant forum for presentations and discussions across a broad range of astrophysical topics.
With the success of Cherenkov Astronomy and more recently with the launch of NASA’s Fermi mission, very-high-energy astrophysics has undergone a revolution in the last years. This book provides three comprehensive and up-to-date reviews of the recent advances in gamma-ray astrophysics and of multi-messenger astronomy. Felix Aharonian and Charles Dermer address our current knowledge on the sources of GeV and TeV photons, gleaned from the precise measurements made by the new instrumentation. Lars Bergström presents the challenges and prospects of astro-particle physics with a particular emphasis on the detection of dark matter candidates. The topics covered by the 40th Saas-Fee Course present the capabilities of current instrumentation and the physics at play in sources of very-high-energy radiation to students and researchers alike. This book will encourage and prepare readers for using space and ground-based gamma-ray observatories, as well as neutrino and other multi-messenger detectors.