Download Free Conservative Finite Difference Methods On General Grids Book in PDF and EPUB Free Download. You can read online Conservative Finite Difference Methods On General Grids and write the review.

This new book deals with the construction of finite-difference (FD) algorithms for three main types of equations: elliptic equations, heat equations, and gas dynamic equations in Lagrangian form. These methods can be applied to domains of arbitrary shapes. The construction of FD algorithms for all types of equations is done on the basis of the support-operators method (SOM). This method constructs the FD analogs of main invariant differential operators of first order such as the divergence, the gradient, and the curl. This book is unique because it is the first book not in Russian to present the support-operators ideas. Conservative Finite-Difference Methods on General Grids is completely self-contained, presenting all the background material necessary for understanding. The book provides the tools needed by scientists and engineers to solve a wide range of practical engineering problems. An abundance of tables and graphs support and explain methods. The book details all algorithms needed for implementation. A 3.5" IBM compatible computer diskette with the main algorithms in FORTRAN accompanies text for easy use.
This book surveys recent developments in numerical techniques for global atmospheric models. It is based upon a collection of lectures prepared by leading experts in the field. The chapters reveal the multitude of steps that determine the global atmospheric model design. They encompass the choice of the equation set, computational grids on the sphere, horizontal and vertical discretizations, time integration methods, filtering and diffusion mechanisms, conservation properties, tracer transport, and considerations for designing models for massively parallel computers. A reader interested in applied numerical methods but also the many facets of atmospheric modeling should find this book of particular relevance.
To help solve physical and engineering problems, mimetic or compatible algebraic discretization methods employ discrete constructs to mimic the continuous identities and theorems found in vector calculus. Mimetic Discretization Methods focuses on the recent mimetic discretization method co-developed by the first author. Based on the Castillo-Grone operators, this simple mimetic discretization method is invariably valid for spatial dimensions no greater than three. The book also presents a numerical method for obtaining corresponding discrete operators that mimic the continuum differential and flux-integral operators, enabling the same order of accuracy in the interior as well as the domain boundary. After an overview of various mimetic approaches and applications, the text discusses the use of continuum mathematical models as a way to motivate the natural use of mimetic methods. The authors also offer basic numerical analysis material, making the book suitable for a course on numerical methods for solving PDEs. The authors cover mimetic differential operators in one, two, and three dimensions and provide a thorough introduction to object-oriented programming and C++. In addition, they describe how their mimetic methods toolkit (MTK)—available online—can be used for the computational implementation of mimetic discretization methods. The text concludes with the application of mimetic methods to structured nonuniform meshes as well as several case studies. Compiling the authors’ many concepts and results developed over the years, this book shows how to obtain a robust numerical solution of PDEs using the mimetic discretization approach. It also helps readers compare alternative methods in the literature.
This book focuses on process simulation in chemical engineering with a numerical algorithm based on the moving finite element method (MFEM). It offers new tools and approaches for modeling and simulating time-dependent problems with moving fronts and with moving boundaries described by time-dependent convection-reaction-diffusion partial differential equations in one or two-dimensional space domains. It provides a comprehensive account of the development of the moving finite element method, describing and analyzing the theoretical and practical aspects of the MFEM for models in 1D, 1D+1d, and 2D space domains. Mathematical models are universal, and the book reviews successful applications of MFEM to solve engineering problems. It covers a broad range of application algorithm to engineering problems, namely on separation and reaction processes presenting and discussing relevant numerical applications of the moving finite element method derived from real-world process simulations.
Among all the numerical methods in seismology, the finite-difference (FD) technique provides the best balance of accuracy and computational efficiency. This book offers a comprehensive introduction to FD and its applications to earthquake motion. Using a systematic tutorial approach, the book requires only undergraduate degree-level mathematics and provides a user-friendly explanation of the relevant theory. It explains FD schemes for solving wave equations and elastodynamic equations of motion in heterogeneous media, and provides an introduction to the rheology of viscoelastic and elastoplastic media. It also presents an advanced FD time-domain method for efficient numerical simulations of earthquake ground motion in realistic complex models of local surface sedimentary structures. Accompanied by a suite of online resources to help put the theory into practice, this is a vital resource for professionals and academic researchers using numerical seismological techniques, and graduate students in earthquake seismology, computational and numerical modelling, and applied mathematics.
The IMA Hot Topics workshop on compatible spatialdiscretizations was held in 2004. This volume contains original contributions based on the material presented there. A unique feature is the inclusion of work that is representative of the recent developments in compatible discretizations across a wide spectrum of disciplines in computational science. Abstracts and presentation slides from the workshop can be accessed on the internet.
The book presents high-quality papers presented at 3rd International Conference on Applications of Fluid Dynamics (ICAFD 2016) organized by Department of Applied Mathematics, ISM Dhanbad, Jharkhand, India in association with Fluid Mechanics Group, University of Botswana, Botswana. The main theme of the Conference is "Sustainable Development in Africa and Asia in context of Fluid Dynamics and Modeling Approaches". The book is divided into seven sections covering all applications of fluid dynamics and their allied areas such as fluid dynamics, nanofluid, heat and mass transfer, numerical simulations and investigations of fluid dynamics, magnetohydrodynamics flow, solute transport modeling and water jet, and miscellaneous. The book is a good reference material for scientists and professionals working in the field of fluid dynamics.
Nonlinear Partial Differential Equations (PDEs) have become increasingly important in the description of physical phenomena. Unlike Ordinary Differential Equations, PDEs can be used to effectively model multidimensional systems. The methods put forward in Discrete Variational Derivative Method concentrate on a new class of "structure-preserving num
Advances in Imaging & Electron Physics merges two long-running serials--Advances in Electronics & Electron Physics and Advances in Optical & Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science and digital image processing, electromagnetic wave propagation, electron microscopy, and the computing methods used in all these domains.
This book constitutes the thoroughly refereed post-conference proceedings of the 7th International Conference on Parallel Processing and Applied Mathematics, PPAM 2007, held in Gdansk, Poland, in September 2007. The 63 revised full papers of the main conference presented together with 85 revised workshop papers were carefully reviewed and selected from over 250 initial submissions. The papers are organized in topical sections on parallel/distributed architectures and mobile computing, numerical algorithms and parallel numerics, parallel and distributed non-numerical algorithms, environments and tools for as well as applications of parallel/distributed/grid computing, evolutionary computing, meta-heuristics and neural networks. The volume proceeds with the outcome of 11 workshops and minisymposia dealing with novel data formats and algorithms for dense linear algebra computations, combinatorial tools for parallel sparse matrix computations, grid applications and middleware, large scale computations on grids, models, algorithms and methodologies for grid-enabled computing environments, scheduling for parallel computing, language-based parallel programming models, performance evaluation of parallel applications on large-scale systems, parallel computational biology, high performance computing for engineering applications, and the minisymposium on interval analysis.