Download Free Connectivity Driven Parcellation Methods For The Human Cerebral Cortex Book in PDF and EPUB Free Download. You can read online Connectivity Driven Parcellation Methods For The Human Cerebral Cortex and write the review.

The macro connectome elucidates the pathways through which brain regions are structurally connected or functionally coupled to perform cognitive functions. It embodies the notion of representing, analysing, and understanding all connections within the brain as a network, while the subdivision of the brain into interacting cortical units is inherent in its architecture. As a result, the definition of network nodes is one of the most critical steps in connectivity network analysis. Parcellations derived from anatomical brain atlases or random parcellations are traditionally used for node identification, however these approaches do not always fully reflect the functional/structural organisation of the brain. Connectivity-driven methods have arisen only recently, aiming to delineate parcellations that are more faithful to the underlying connectivity. Such parcellation methods face several challenges, including but not limited to poor signal-to-noise ratio, the curse of dimensionality, and functional/structural variations inherent in individual brains, which are only limitedly addressed by the current state of the art. In this thesis, we present robust and fully-automated methods for the subdivision of the entire human cerebral cortex based on connectivity information. Our contributions are four-fold: First, we propose a clustering approach to delineate a cortical parcellation that provides a reliable abstraction of the brain's functional organisation. Second, we cast the parcellation problem as a feature reduction problem and make use of manifold learning and image segmentation techniques to identify cortical regions with distinct structural connectivity patterns. Third, we present a multi-layer graphical model that combines within- and between-subject connectivity, which is then decomposed into a cortical parcellation that can represent the whole population, while accounting for the variability across subjects. Finally, we conduct a large-scale, systematic comparison of existing parcellation methods, with a focus on providing some insight into the reliability of brain parcellations in terms of reflecting the underlying connectivity, as well as, revealing their impact on network analysis. We evaluate the proposed parcellation methods on publicly available data from the Human Connectome Project and a plethora of quantitative and qualitative evaluation techniques investigated in the literature. Experiments across multiple resolutions demonstrate the accuracy of the presented methods at both subject and group levels with regards to reproducibility and fidelity to the data. The neuro-biological interpretation of the proposed parcellations is also investigated by comparing parcel boundaries with well-structured properties of the cerebral cortex. Results show the advantage of connectivity-driven parcellations over traditional approaches in terms of better fitting the underlying connectivity. However, the benefit of using connectivity to parcellate the brain is not always as clear regarding the agreement with other modalities and simple network analysis tasks carried out across healthy subjects. Nonetheless, we believe the proposed methods, along with the systematic evaluation of existing techniques, offer an important contribution to the field of brain parcellation, advancing our understanding of how the human cerebral cortex is organised at the macroscale.
This book has brought together leading investigators who work in the new arena of brain connectomics. This includes ‘macro-connectome’ efforts to comprehensively chart long-distance pathways and functional networks; ‘micro-connectome’ efforts to identify every neuron, axon, dendrite, synapse, and glial process within restricted brain regions; and ‘meso-connectome’ efforts to systematically map both local and long-distance connections using anatomical tracers. This book highlights cutting-edge methods that can accelerate progress in elucidating static ‘hard-wired’ circuits of the brain as well as dynamic interactions that are vital for brain function. The power of connectomic approaches in characterizing abnormal circuits in the many brain disorders that afflict humankind is considered. Experts in computational neuroscience and network theory provide perspectives needed for synthesizing across different scales in space and time. Altogether, this book provides an integrated view of the challenges and opportunities in deciphering brain circuits in health and disease.
Fundamentals of Brain Network Analysis is a comprehensive and accessible introduction to methods for unraveling the extraordinary complexity of neuronal connectivity. From the perspective of graph theory and network science, this book introduces, motivates and explains techniques for modeling brain networks as graphs of nodes connected by edges, and covers a diverse array of measures for quantifying their topological and spatial organization. It builds intuition for key concepts and methods by illustrating how they can be practically applied in diverse areas of neuroscience, ranging from the analysis of synaptic networks in the nematode worm to the characterization of large-scale human brain networks constructed with magnetic resonance imaging. This text is ideally suited to neuroscientists wanting to develop expertise in the rapidly developing field of neural connectomics, and to physical and computational scientists wanting to understand how these quantitative methods can be used to understand brain organization. - Winner of the 2017 PROSE Award in Biomedicine & Neuroscience and the 2017 British Medical Association (BMA) Award in Neurology - Extensively illustrated throughout by graphical representations of key mathematical concepts and their practical applications to analyses of nervous systems - Comprehensively covers graph theoretical analyses of structural and functional brain networks, from microscopic to macroscopic scales, using examples based on a wide variety of experimental methods in neuroscience - Designed to inform and empower scientists at all levels of experience, and from any specialist background, wanting to use modern methods of network science to understand the organization of the brain
This Handbook serves as an authoritative reference book in the field of Neuroengineering. Neuroengineering is a very exciting field that is rapidly getting established as core subject matter for research and education. The Neuroengineering field has also produced an impressive array of industry products and clinical applications. It also serves as a reference book for graduate students, research scholars and teachers. Selected sections or a compendium of chapters may be used as “reference book” for a one or two semester graduate course in Biomedical Engineering. Some academicians will construct a “textbook” out of selected sections or chapters. The Handbook is also meant as a state-of-the-art volume for researchers. Due to its comprehensive coverage, researchers in one field covered by a certain section of the Handbook would find other sections valuable sources of cross-reference for information and fertilization of interdisciplinary ideas. Industry researchers as well as clinicians using neurotechnologies will find the Handbook a single source for foundation and state-of-the-art applications in the field of Neuroengineering. Regulatory agencies, entrepreneurs, investors and legal experts can use the Handbook as a reference for their professional work as well.​
A pioneer in the field outlines new empirical and computational approaches to mapping the neural connections of the human brain. Crucial to understanding how the brain works is connectivity, and the centerpiece of brain connectivity is the connectome, a comprehensive description of how neurons and brain regions are connected. In this book, Olaf Sporns surveys current efforts to chart these connections—to map the human connectome. He argues that the nascent field of connectomics has already begun to influence the way many neuroscientists collect, analyze, and think about their data. Moreover, the idea of mapping the connections of the human brain in their entirety has captured the imaginations of researchers across several disciplines including human cognition, brain and mental disorders, and complex systems and networks. Discovering the Human Connectome offers the first comprehensive overview of current empirical and computational approaches in this rapidly developing field.
Unraveling the functional properties of structural elements in the brain is one of the fundamental goals of neuroscientific research. In the cerebral cortex this is no mean feat, since cortical areas are defined microstructurally in post-mortem brains but functionally in living brains with electrophysiological or neuroimaging techniques – and cortical areas vary in their topographical properties across individual brains. Being able to map both microstructure and function in the same brains noninvasively in vivo would represent a huge leap forward. In recent years, high-field magnetic resonance imaging (MRI) technologies with spatial resolution below 0.5 mm have set the stage for this by detecting structural differences within the human cerebral cortex, beyond the Stria of Gennari. This provides the basis for an in vivo microanatomical brain map, with the enormous potential to make direct correlations between microstructure and function in living human brains. This book starts with Brodmann’s post-mortem map published in the early 20th century, moves on to the almost forgotten microstructural maps of von Economo and Koskinas and the Vogt-Vogt school, sheds some light on more recent approaches that aim at mapping cortical areas noninvasively in living human brains, and culminates with the concept of “in vivo Brodmann mapping” using high-field MRI, which was introduced in the early 21st century.
Biomedical Texture Analysis: Fundamentals, Applications, Tools and Challenges describes the fundamentals and applications of biomedical texture analysis (BTA) for precision medicine. It defines what biomedical textures (BTs) are and why they require specific image analysis design approaches when compared to more classical computer vision applications. The fundamental properties of BTs are given to highlight key aspects of texture operator design, providing a foundation for biomedical engineers to build the next generation of biomedical texture operators. Examples of novel texture operators are described and their ability to characterize BTs are demonstrated in a variety of applications in radiology and digital histopathology. Recent open-source software frameworks which enable the extraction, exploration and analysis of 2D and 3D texture-based imaging biomarkers are also presented. This book provides a thorough background on texture analysis for graduate students and biomedical engineers from both industry and academia who have basic image processing knowledge. Medical doctors and biologists with no background in image processing will also find available methods and software tools for analyzing textures in medical images. - Defines biomedical texture precisely and describe how it is different from general texture information considered in computer vision - Defines the general problem to translate 2D and 3D texture patterns from biomedical images to visually and biologically relevant measurements - Describes, using intuitive concepts, how the most popular biomedical texture analysis approaches (e.g., gray-level matrices, fractals, wavelets, deep convolutional neural networks) work, what they have in common, and how they are different - Identifies the strengths, weaknesses, and current challenges of existing methods including both handcrafted and learned representations, as well as deep learning. The goal is to establish foundations for building the next generation of biomedical texture operators - Showcases applications where biomedical texture analysis has succeeded and failed - Provides details on existing, freely available texture analysis software, helping experts in medicine or biology develop and test precise research hypothesis
This book introduces multidimensional scaling (MDS) and unfolding as data analysis techniques for applied researchers. MDS is used for the analysis of proximity data on a set of objects, representing the data as distances between points in a geometric space (usually of two dimensions). Unfolding is a related method that maps preference data (typically evaluative ratings of different persons on a set of objects) as distances between two sets of points (representing the persons and the objects, resp.). This second edition has been completely revised to reflect new developments and the coverage of unfolding has also been substantially expanded. Intended for applied researchers whose main interests are in using these methods as tools for building substantive theories, it discusses numerous applications (classical and recent), highlights practical issues (such as evaluating model fit), presents ways to enforce theoretical expectations for the scaling solutions, and addresses the typical mistakes that MDS/unfolding users tend to make. Further, it shows how MDS and unfolding can be used in practical research work, primarily by using the smacof package in the R environment but also Proxscal in SPSS. It is a valuable resource for psychologists, social scientists, and market researchers, with a basic understanding of multivariate statistics (such as multiple regression and factor analysis).
The three-volume set LNCS 9349, 9350, and 9351 constitutes the refereed proceedings of the 18th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2015, held in Munich, Germany, in October 2015. Based on rigorous peer reviews, the program committee carefully selected 263 revised papers from 810 submissions for presentation in three volumes. The papers have been organized in the following topical sections: quantitative image analysis I: segmentation and measurement; computer-aided diagnosis: machine learning; computer-aided diagnosis: automation; quantitative image analysis II: classification, detection, features, and morphology; advanced MRI: diffusion, fMRI, DCE; quantitative image analysis III: motion, deformation, development and degeneration; quantitative image analysis IV: microscopy, fluorescence and histological imagery; registration: method and advanced applications; reconstruction, image formation, advanced acquisition - computational imaging; modelling and simulation for diagnosis and interventional planning; computer-assisted and image-guided interventions.
The three-volume set LNCS 9900, 9901, and 9902 constitutes the refereed proceedings of the 19th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2016, held in Athens, Greece, in October 2016. Based on rigorous peer reviews, the program committee carefully selected 228 revised regular papers from 756 submissions for presentation in three volumes. The papers have been organized in the following topical sections: Part I: brain analysis; brain analysis - connectivity; brain analysis - cortical morphology; Alzheimer disease; surgical guidance and tracking; computer aided interventions; ultrasound image analysis; cancer image analysis; Part II: machine learning and feature selection; deep learning in medical imaging; applications of machine learning; segmentation; cell image analysis; Part III: registration and deformation estimation; shape modeling; cardiac and vascular image analysis; image reconstruction; and MR image analysis.