Download Free Connectionist Symbolic Integration From Unified To Hybrid Approaches Book in PDF and EPUB Free Download. You can read online Connectionist Symbolic Integration From Unified To Hybrid Approaches and write the review.

A variety of ideas, approaches, and techniques exist -- in terms of both architecture and learning -- and this abundance seems to lead to many exciting possibilities in terms of theoretical advances and application potentials. Despite the apparent diversity, there is clearly an underlying unifying theme: architectures that bring together symbolic and connectionist models to achieve a synthesis and synergy of the two different paradigms, and the learning and knowledge acquisition methods for developing such architectures. More effort needs to be extended to exploit the possibilities and opportunities in this area. This book is the outgrowth of The IJCAI Workshop on Connectionist-Symbolic Integration: From Unified to Hybrid Approaches, held in conjunction with the fourteenth International Joint Conference on Artificial Intelligence (IJCAI '95). Featuring various presentations and discussions, this two-day workshop brought to light many new ideas, controversies, and syntheses which lead to the present volume. This book is concerned with the development, analysis, and application of hybrid connectionist-symbolic models in artificial intelligence and cognitive science. Drawing contributions from a large international group of experts, it describes and compares a variety of models in this area. The types of models discussed cover a wide range of the evolving spectrum of hybrid models, thus serving as a well-balanced progress report on the state of the art. As such, this volume provides an information clearinghouse for various proposed approaches and models that share the common belief that connectionist and symbolic models can be usefully combined and integrated, and such integration may lead to significant advances in understanding intelligence.
Engineering Intelligent Hybrid Multi-Agent Systems is about building intelligent hybrid systems. Included is coverage of applications and design concepts related to fusion systems, transformation systems and combination systems. These applications are in areas involving hybrid configurations of knowledge-based systems, case-based reasoning, fuzzy systems, artificial neural networks, genetic algorithms, and in knowledge discovery and data mining. Through examples and applications a synergy of these subjects is demonstrated. The authors introduce a multi-agent architectural theory for engineering intelligent associative hybrid systems. The architectural theory is described at both the task structure level and the computational level. This problem-solving architecture is relevant for developing knowledge agents and information agents. An enterprise-wide system modeling framework is outlined to facilitate forward and backward integration of systems developed in the knowledge, information, and data engineering layers of an organization. In the modeling process, software engineering aspects like agent oriented analysis, design and reuse are developed and described. Engineering Intelligent Hybrid Multi-Agent Systems is the first book in the field to provide details of a multi-agent architecture for building intelligent hybrid systems.
Hybrid neural systems are computational systems which are based mainly on artificial neural networks and allow for symbolic interpretation or interaction with symbolic components. This book is derived from a workshop held during the NIPS'98 in Denver, Colorado, USA, and competently reflects the state of the art of research and development in hybrid neural systems. The 26 revised full papers presented together with an introductory overview by the volume editors have been through a twofold process of careful reviewing and revision. The papers are organized in the following topical sections: structured connectionism and rule representation; distributed neural architectures and language processing; transformation and explanation; robotics, vision, and cognitive approaches.
This study explores the design and application of natural language text-based processing systems, based on generative linguistics, empirical copus analysis, and artificial neural networks. It emphasizes the practical tools to accommodate the selected system.
Artificial Intelligence is concerned with producing devices that help or replace human beings in their daily activities. Neural-symbolic learning systems play a central role in this task by combining, and trying to benefit from, the advantages of both the neural and symbolic paradigms of artificial intelligence. This book provides a comprehensive introduction to the field of neural-symbolic learning systems, and an invaluable overview of the latest research issues in this area. It is divided into three sections, covering the main topics of neural-symbolic integration - theoretical advances in knowledge representation and learning, knowledge extraction from trained neural networks, and inconsistency handling in neural-symbolic systems. Each section provides a balance of theory and practice, giving the results of applications using real-world problems in areas such as DNA sequence analysis, power systems fault diagnosis, and software requirements specifications. Neural-Symbolic Learning Systems will be invaluable reading for researchers and graduate students in Engineering, Computing Science, Artificial Intelligence, Machine Learning and Neurocomputing. It will also be of interest to Intelligent Systems practitioners and anyone interested in applications of hybrid artificial intelligence systems.
The combination of different intelligent methods is a very active research area in Artificial Intelligence (AI). The aim is to create integrated or hybrid methods that benefit from each of their components. Some of the existing efforts combine soft computing methods either among themselves or with more traditional AI methods such as logic and rules. Another stream of efforts integrates machine learning with soft-computing or traditional AI methods. Yet another integrates agent-based approaches with logic and also non-symbolic approaches. Some of the combinations have been quite important and more extensively used, like neuro-symbolic methods, neuro-fuzzy methods and methods combining rule-based and case-based reasoning. However, there are other combinations that are still under investigation, such as those related to the Semantic Web. The 2nd Workshop on “Combinations of Intelligent Methods and Applications” (CIMA 2010) was intended to become a forum for exchanging experience and ideas among researchers and practitioners who are dealing with combining intelligent methods either based on first principles or in the context of specific applications. CIMA 2010 was held in conjunction with the 22nd IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2010). Also, a special track was organized in ICTAI 2010, under the same title. This volume includes revised versions of the papers presented in CIMA 2010 and one of the short papers presented in the corresponding ICTAI 2010 special track. It also includes a paper of the editors as invited.
The Mind and Brain are usually considered as one and the same nonlinear, complex dynamical system, in which information processing can be described with vector and tensor transformations and with attractors in multidimensional state spaces. Thus, an internal neurocognitive representation concept consists of a dynamical process which filters out statistical prototypes from the sensorial information in terms of coherent and adaptive n-dimensional vector fields. These prototypes serve as a basis for dynamic, probabilistic predictions or probabilistic hypotheses on prospective new data (see the recently introduced approach of "predictive coding" in neurophilosophy). Furthermore, the phenomenon of sensory and language cognition would thus be based on a multitude of self-regulatory complex dynamics of synchronous self-organization mechanisms, in other words, an emergent "flux equilibrium process" ("steady state") of the total collective and coherent neural activity resulting from the oscillatory actions of neuronal assemblies. In perception it is shown how sensory object informations, like the object color or the object form, can be dynamically related together or can be integrated to a neurally based representation of this perceptual object by means of a synchronization mechanism ("feature binding"). In language processing it is shown how semantic concepts and syntactic roles can be dynamically related together or can be integrated to neurally based systematic and compositional connectionist representations by means of a synchronization mechanism ("variable binding") solving the Fodor-Pylyshyn-Challenge. Since the systemtheoretical connectionism has succeeded in modeling the sensory objects in perception as well as systematic and compositional representations in language processing with this vector- and oscillation-based representation format, a new, convincing theory of neurocognition has been developed, which bridges the neuronal and the cognitive analysis level. The book describes how elementary neuronal information is combined in perception and language, so it becomes clear how the brain processes this information to enable basic cognitive performance of the humans.
In the existing literature the intersection of agent technology with soft computing is a very recent and attractive issue. The book is devoted to a unifying perspective of this topic. In contains contributions by well-known authors whose expertise is universally recognized in these crossing areas. Particular emphasis is devoted to advanced research projects involved with Web-related technologies. Fundamental topics explored in this volume are: - formal theories and logics to represent and handle imprecise communication acts among communities of agents; - soft-computing approaches to define distributed problem-solving techniques to represent and reason about large-scale control systems; - decomposition of a complex system into autonomous or semiautonomous agents through evolutionary models; - enrichment of agent programming paradigm for cooperative soft-computing processing.
“Intelligent systems must perform in order to be in demand. ” Intelligent systems technology is being applied steadily in solving many day-to-day problems. Each year the list of real-world deployed applications that inconspicuously host the results of research in the area grows considerably. These applications are having a significant impact in industrial operations, in financial circles, in transportation, in education, in medicine, in consumer products, in games and elsewhere. A set of selected papers presented at the seventeenth in the series of conferences on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems (IEA/AIE 2004), sponsored by the International Society of Applied Intelligence, is offered in this manuscript. These papers highlight novel applications of the technology and show how new research could lead to new and innovative applications. We hope that you find these papers to be educational, useful in your own research, and stimulating. In addition, we have introduced some special sessions to emphasize a few areas of artificial intelligence (AI) that are either relatively new, have received considerable attention recently or perhaps have not yet been represented well. To this end, we have included special sessions on e-learning, bioinformatics, and human-robot interaction (HRI) to complement the usual offerings in areas such as data mining, machine learning, intelligent systems, neural networks, genetic algorithms, autonomous agents, natural language processing, intelligent user interfaces, evolutionary computing, fuzzy logic, computer vision and image processing, reasoning, heuristic search, security, Internet applications, constraint satisfaction problems, design, and expert systems.
As data is an important asset for any organization, it is essential to apply semantic technologies in data science to fulfill the need of any organization. This first volume of a two-volume handbook set provides a roadmap for new trends and future developments of data science with semantic technologies. Data Science with Semantic Technologies: New Trends and Future Developments highlights how data science enables the user to create intelligence through these technologies. In addition, this book offers the answers to various questions such as: Can semantic technologies facilitate data science? Which type of data science problems can be tackled by semantic technologies? How can data scientists benefit from these technologies? What is the role of semantic technologies in data science? What is the current progress and future of data science with semantic technologies? Which types of problems require the immediate attention of the researchers? What should be the vision 2030 for data science? This volume can serve as an important guide toward applications of data science with semantic technologies for the upcoming generation and, thus, it is a unique resource for scholars, researchers, professionals, and practitioners in this field.