Download Free Confronting Prior Conceptions In Paleontology Courses Book in PDF and EPUB Free Download. You can read online Confronting Prior Conceptions In Paleontology Courses and write the review.

People hold a variety of prior conceptions that impact their learning. Prior conceptions that include erroneous or incomplete understandings represent a significant barrier to durable learning, as they are often difficult to change. While researchers have documented students' prior conceptions in many areas of geoscience, little is known about prior conceptions involving paleontology. In this Element, data on student prior conceptions from two introductory undergraduate paleontology courses are presented. In addition to more general misunderstandings about the nature of science, many students hold incorrect ideas about methods of historical geology, Earth history, ancient life, and evolution. Of special note are student perceptions of the limits of paleontology as scientific inquiry. By intentionally eliciting students' prior conceptions and implementing the pedagogical strategies described in other Elements in this series, lecturers can shape instruction to challenge this negative view of paleontology and improve student learning.
The educational benefits of replacing in-class lectures with hands-on activities are clear. Such active learning is a natural fit for paleontology, which can provide opportunities for examining fossils, analyzing data and writing. Additionally, there are a number of topics in the field that are exciting to geology majors and non-majors alike: very few can resist the lure of dinosaurs, huge meteor impacts, vicious Cretaceous sharks or a giant Pleistocene land mammal. However, it can seem difficult to introduce these techniques into a large general education class full of non-majors: paleontological specimens provide a natural starting point for hands-on classroom activities, but in a large class it is not always practical or possible to provide enough fossil material for all students. The Element introduces different types of active learning approaches, and then explains how they have been applied to a large introductory paleontology class for non-majors.
Paleontology is one of the most visible yet most misunderstood fields of science. Children dream of becoming paleontologists when they grow up. Museum visitors flock to exhibits on dinosaurs and other prehistoric animals. The media reports on fossil discoveries and new clues to mass extinctions. Nonetheless, misconceptions abound: paleontologists are assumed only to be interested in dinosaurs, and they are all too often imagined as bearded white men in battered cowboy hats. Roy Plotnick provides a behind-the-scenes look at paleontology as it exists today in all its complexity. He explores the field’s aims, methods, and possibilities, with an emphasis on the compelling personal stories of the scientists who have made it a career. Paleontologists study the entire history of life on Earth; they do not only use hammers and chisels to unearth fossils but are just as likely to work with cutting-edge computing technology. Plotnick presents the big questions about life’s history that drive paleontological research and shows why knowledge of Earth’s past is essential to understanding present-day environmental crises. He introduces readers to the diverse group of people of all genders, races, and international backgrounds who make up the twenty-first-century paleontology community, foregrounding their perspectives and firsthand narratives. He also frankly discusses the many challenges that face the profession, with key takeaways for aspiring scientists. Candid and comprehensive, Explorers of Deep Time is essential reading for anyone curious about the everyday work of real-life paleontologists.
Lecturing has been a staple of university pedagogy, but a shift is ongoing because of evidence that active engagement with content helps strengthen learning and build more advanced skills. The flipped classroom, which delivers content to students outside of the class meeting, is one approach to maximize time for active learning. The fundamental benefit of a flipped class is that students learn more, but ensuring student preparation and engagement can be challenging. Evaluation policies can provide incentives to guide student effort. Flipping a class requires an initial time commitment, but the workload associated with evaluating student work during the course can be mitigated. The personal interactions from active learning are extremely rewarding for students and instructors, especially when class sizes are small and suitable room layouts are available. Overall, flipping a course doesn't require special training, just a willingness to experiment, reflect, and adjust.
Research on learning and cognition in geoscience education research and other discipline-based education communities suggests that effective instruction should include three key components: a) activation of students' prior knowledge on the subject, b) an active learning pedagogy that allows students to address any existing misconceptions and then build a new understanding of the concept, and c) metacognitive reflections that require students to evaluate their own learning processes during the lesson. This Element provides an overview of the research on student-centered pedagogy in introductory geoscience and paleontology courses and gives examples of these instructional approaches. Student-centered learning shifts the power and attention in a classroom from the instructor to the students. In a student-centered classroom, students are in control of their learning experience and the instructor functions primarily as a guide. Student-centered classrooms trade traditional lecture for conceptually-oriented tasks, collaborative learning activities, new technology, inquiry-based learning, and metacognitive reflection.
Recent advances in statistical approaches called phylogenetic comparative methods (PCMs) have provided paleontologists with a powerful set of analytical tools for investigating evolutionary tempo and mode in fossil lineages. However, attempts to integrate PCMs with fossil data often present workers with practical challenges or unfamiliar literature. This Element presents guides to the theory behind and the application of PCMs with fossil taxa. Based on an empirical dataset of Paleozoic crinoids, example analyses are presented to illustrate common applications of PCMs to fossil data, including investigating patterns of correlated trait evolution and macroevolutionary models of morphological change. The authors emphasize the importance of accounting for sources of uncertainty and discuss how to evaluate model fit and adequacy. Finally, the authors discuss several promising methods for modeling heterogeneous evolutionary dynamics with fossil phylogenies. Integrating phylogeny-based approaches with the fossil record provides a rigorous, quantitative perspective on understanding key patterns in the history of life.
Computational fluid dynamics (CFD), which involves using computers to simulate fluid flow, is emerging as a powerful approach for elucidating the palaeobiology of ancient organisms. Here, Imran A. Rahman describes its applications for studying fossil echinoderms. When properly configured, CFD simulations can be used to test functional hypotheses in extinct species, informing on aspects such as feeding and stability. They also show great promise for addressing ecological questions related to the interaction between organisms and their environment. CFD has the potential to become an important tool in echinoderm palaeobiology over the coming years.
The principles of stratigraphic paleobiology can be readily applied to the nonmarine fossil record. Consistent spatial and temporal patterns of accommodation and sedimentation in sedimentary basins are an important control on stratigraphic architecture. Temperature and precipitation covary with elevation, causing significant variation in community composition, and changes in base level cause elevation to undergo predictable changes. These principles lead to eight sets of hypotheses about the nonmarine fossil record. Three relate to long-term and cyclical patterns in the preservation of major fossil groups and their taphonomy, as well as the occurrence of fossil concentrations. The remaining hypotheses relate to the widespread occurrence of elevation-correlated gradients in community composition, long-term and cyclical trends in these communities, and the stratigraphic position of abrupt changes in community composition. Testing of these hypotheses makes the stratigraphic paleobiology of nonmarine systems a promising area of investigation.
Placing evolutionary events in the context of geological time is a fundamental goal in paleobiology and macroevolution. In this Element we describe the tripartite model used for Bayesian estimation of time calibrated phylogenetic trees. The model can be readily separated into its component models: the substitution model, the clock model and the tree model. We provide an overview of the most widely used models for each component and highlight the advantages of implementing the tripartite model within a Bayesian framework.