Download Free Confinement Limitations In Gridded Inertial Electrostatic Confinement Fusion Devices Book in PDF and EPUB Free Download. You can read online Confinement Limitations In Gridded Inertial Electrostatic Confinement Fusion Devices and write the review.

A high output power source is required for fast, manned exploration of the solar system, especially the outer planets. Travel times measured in months, not years, will require high power, lightweight nuclear systems. The mature nuclear concepts of solidcore fission and fusion Tokamaks do not satisfy the lightweight criteria due to massive radiators and magnets respectively. An attractive alternative is Inertial Electrostatic Confinement fusion. This extremely lightweight option has been studied extensively and to date has produced significant fusion rates of order 1010 reactions per second, but at low power gains, no higher than Q = 10-4. The major loss mechanisms for the state-of-the-art IEC are identified via a detailed reaction rate scaling analysis. The use of a single cathode grid causes short ion lifetimes and operation at high device pressure for simple ion generation both fundamentally limit the efficiency of these devices. Several improvements, including operation at much lower pressure with ion guns and the use of multiple cathode grids, are verified with particle-in-cell modeling to greatly improve the efficiency of IECs. These simulations show that the greatly increased confinement allows for the development of significant collective behavior in the recirculating ions. The plasma self-organizes from an initially uniform state into a synchronized, pulsing collection of ion bunches.
The spherical inertial electrostatic confinement concept offers an alternative fusion plasma confinement scheme, where charged particles are accelerated and confined electrostatically with a series of biased spherical concentric electrodes. The inertia of the accelerated ions compresses the ions and builds up the space charge at the center of the cathode grid. The space charge of the ions attracts electrons which in turn accumulate a space charge. The accumulation of collective space charge creates a series of deep "virtual" electrostatic potential wells which confine and concentrate ions into a small volume where an appreciable number of nuclear fusion reactions could occur. It is very attractive for a power plant due to its mechanical simplicity and high power-to-mass ratio. However, its beam-plasma interactions are not clearly understood.
This book provides readers with an introductory understanding of Inertial Electrostatic Confinement (IEC), a type of fusion meant to retain plasma using an electrostatic field. IEC provides a unique approach for plasma confinement, as it offers a number of spin-off applications, such as a small neutron source for Neutron Activity Analysis (NAA), that all work towards creating fusion power. The IEC has been identified in recent times as an ideal fusion power unit because of its ability to burn aneutronic fuels like p-B11 as a result of its non-Maxwellian plasma dominated by beam-like ions. This type of fusion also takes place in a simple mechanical structure small in size, which also contributes to its viability as a source of power. This book posits that the ability to study the physics of IEC in very small volume plasmas makes it possible to rapidly investigate a design to create a power-producing device on a much larger scale. Along with this hypothesis the book also includes a conceptual experiment proposed for demonstrating breakeven conditions for using p-B11 in a hydrogen plasma simulation. This book also: Offers an in-depth look, from introductory basics to experimental simulation, of Inertial Electrostatic Confinement, an emerging method for generating fusion power Discusses how the Inertial Electrostatic Confinement method can be applied to other applications besides fusion through theoretical experiments in the text Details the study of the physics of Inertial Electrostatic Confinement in small-volume plasmas and suggests that their rapid reproduction could lead to the creation of a large-scale power-producing device Perfect for researchers and students working with nuclear fusion, Inertial Electrostatic Confinement (IEC) Fusion: Fundamentals and Applications also offers the current experimental status of IEC research, details supporting theories in the field and introduces other potential applications that stem from IEC.
Recent inertial electrostatic confinement (IEC) fusion concepts are discussed and their shortcomings noted. Ion space charge is substantiated as a significant hindrance to high efficiencies, so a method for space charge neutralization in an ion-injected IEC device is proposed. An electrostatically- plugged magnetic trap is used to confine electrons in the core region of a planar electrostatic trap for ions. The electrons act to dynamically neutralize the space charge created by converging ions for the purpose of increasing achievable core density and fusion rates. An electrostatic trap utilizing this method of neutralization is termed the plasma-core planar electrostatic trap, or PCPET. COMSOL Multiphysics 4.3 is used to model the electromagnetic fields of the PCPET and compute lone ion and electron trajectories within them. In the proper configuration, ions are shown to be stably confined in the trap for many hundreds of oscillations, potentially much longer. Electrons are confined virtually infinitely in the central electrostatically-plugged cusp. For both species, upscatter into source electrodes seems to be the dominant loss mechanism. Adjusting the electron energy and behavior in the core to provide the optimum neutralization for ions is discussed. Ion synchronization behavior can be controlled with RF signals applied to the anode. Two operational modes are identified and discriminated by the state of ion synchronization. Further experimentation is needed to determine which mode produces the optimal neutralization and fusion rate. An experimental prototype PCPET is constructed out of 3D-printed PLA and machined aluminum.
Current space exploration has transpired through the use of chemical rockets, and they have served us well, but they have their limitations. Exploration of the outer solar system, Jupiter and beyond will most likely require a new generation of propulsion system. One potential technology class to provide spacecraft propulsion and power systems involve thermonuclear fusion plasma systems. In this class it is well accepted that d-He3 fusion is the most promising of the fuel candidates for spacecraft applications as the 14.7 MeV protons carry up to 80% of the total fusion power while 1̐Ł0́8s have energies less than 4 MeV. The other minor fusion products from secondary d-d reactions consisting of 3He, n, p, and 3H also have energies less than 4 MeV. Furthermore there are two main fusion subsets namely, Magnetic Confinement Fusion devices and Inertial Electrostatic Confinement (or IEC) Fusion devices. Magnetic Confinement Fusion devices are characterized by complex geometries and prohibitive structural mass compromising spacecraft use at this stage of exploration. While generating energy from a lightweight and reliable fusion source is important, another critical issue is harnessing this energy into usable power and/or propulsion. IEC fusion is a method of fusion plasma confinement that uses a series of biased electrodes that accelerate a uniform spherical beam of ions into a hollow cathode typically comprised of a gridded structure with high transparency. The inertia of the imploding ion beam compresses the ions at the center of the cathode increasing the density to the point where fusion occurs. Since the velocity distributions of fusion particles in an IEC are essentially isotropic and carry no net momentum, a means of redirecting the velocity of the particles is necessary to efficiently extract energy and provide power or create thrust. There are classes of advanced fuel fusion reactions where direct-energy conversion based on electrostatically-biased collector plates is impossible due to potential limits, material structure limitations, and IEC geometry. Thermal conversion systems are also inefficient for this application. A method of converting the isotropic IEC into a collimated flow of fusion products solves these issues and allows direct energy conversion. An efficient traveling wave direct energy converter has been proposed and studied by Momota , Shu and further studied by evaluated with numerical simulations by Ishikawa and others. One of the conventional methods of collimating charged particles is to surround the particle source with an applied magnetic channel. Charged particles are trapped and move along the lines of flux. By introducing expanding lines of force gradually along the magnetic channel, the velocity component perpendicular to the lines of force is transferred to the parallel one. However, efficient operation of the IEC requires a null magnetic field at the core of the device. In order to achieve this, Momota and Miley have proposed a pair of magnetic coils anti-parallel to the magnetic channel creating a null hexapole magnetic field region necessary for the IEC fusion core. Numerically, collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 95% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A while collimation of electrons with stabilization coil present was demonstrated to reach 69% at a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A. Experimentally, collimation of electrons with stabilization coil present was demonstrated experimentally to be 35% at 100 eV and reach a peak of 39.6% at 50eV with a profile corresponding to Vsolenoid = 7.0V, Istab = 1.1A, Ifloating = 1.1A, Isolenoid = 1.45A and collimation of 300 eV electrons without a stabilization coil was demonstrated to approach 49% at a profile corresponding to Vsolenoid = 20.0V, Ifloating = 2.78A, Isolenoid = 4.05A 6.4% of the 300eV electrons0́9 initial velocity is directed to the collector plates. The remaining electrons are trapped by the collimator0́9s magnetic field. These particles oscillate around the null field region several hundred times and eventually escape to the collector plates. At a solenoid voltage profile of 7 Volts, 100 eV electrons are collimated with wall and perpendicular component losses of 31%. Increasing the electron energy beyond 100 eV increases the wall losses by 25% at 300 eV. Ultimately it was determined that a field strength deriving from 9.5 MAT/m would be required to collimate 14.7 MeV fusion protons from d-3He fueled IEC fusion core. The concept of the proton collimator has been proven to be effective to transform an isotropic source into a collimated flow of particles ripe for direct energy conversion.