Download Free Condensation And Coherence In Condensed Matter Proceedings Of The Nobel Jubilee Symposium Book in PDF and EPUB Free Download. You can read online Condensation And Coherence In Condensed Matter Proceedings Of The Nobel Jubilee Symposium and write the review.

In 2001, the Nobel Foundation celebrated the 100th anniversary of the first Nobel Prize, and all previous Nobel laureates were invited to attend the Nobel ceremonies in Stockholm. This gave an excellent opportunity for arranging jubilee symposia with topics that would attract several of the laureates. The chosen subject of “Condensation and Coherence in Condensed Systems” attracted sixteen Nobel laureates and another thirty-five leading scientists.The idea was to bring scientists together from several related subdisciplines: atomic physics, quantum optics, and condensed matter physics, for cross-breeding of ideas, concepts, and experience. Subjects like phase transitions in strongly coupled systems, Bose-Einstein condensation in weakly coupled systems, macroscopic quantum phenomena, coherence in mesoscopic structures, and quantum information were intensively discussed from different points of view. Coherence phenomena in condensed systems were emphasized. A special session was devoted to the emerging field of quantum computing, with experimental and theoretical results reported for different types of qu-bits. The 2001 Nobel Prize awarded to Eric Cornell, Wolfgang Ketterle, and Carl Wieman, “for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates,” gave an extra flavor to the theme of the Centennial Symposium.
In 2001, the Nobel Foundation celebrated the 100th anniversary of the first Nobel Prize, and all previous Nobel laureates were invited to attend the Nobel ceremonies in Stockholm. This gave an excellent opportunity for arranging jubilee symposia with topics that would attract several of the laureates. The chosen subject of ?Condensation and Coherence in Condensed Systems? attracted sixteen Nobel laureates and another thirty-five leading scientists.The idea was to bring scientists together from several related subdisciplines: atomic physics, quantum optics, and condensed matter physics, for cross-breeding of ideas, concepts, and experience. Subjects like phase transitions in strongly coupled systems, Bose-Einstein condensation in weakly coupled systems, macroscopic quantum phenomena, coherence in mesoscopic structures, and quantum information were intensively discussed from different points of view. Coherence phenomena in condensed systems were emphasized. A special session was devoted to the emerging field of quantum computing, with experimental and theoretical results reported for different types of qu-bits. The 2001 Nobel Prize awarded to Eric Cornell, Wolfgang Ketterle, and Carl Wieman, ?for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and for early fundamental studies of the properties of the condensates,? gave an extra flavor to the theme of the Centennial Symposium.
Rarely do so many leading physicists attend one symposium. No less than nine Nobel laureates and some 40 other top researchers gathered for this symposium and this book contains the material presented in invited talks as well as the posters. The 34 papers are organised into three groups corresponding to various aspects of low dimensional physics of solids.
The book provides a review of some of the most important and 'hot' topics in condensed matter physics today. It includes contributions by internationally leading experts such as V M Agranovich, B L Altshuler, E Burstein, V L Ginzburg, K Von Klitzing, P B Littlewood, M Pepper etc, and can serve as a guide-book to modern condensed matter physics.
This book features selected works presented in the 28th National Conference on Condensed Matter Physics, “Condensed Matter Days (CMDAYS) 2020”, which was held from December 11th to 13th December 2020. The conference brought together seasoned experts and upcoming researchers from all over India to share their research and ideas in the field of condensed matter physics. This book is a glimpse into the works and ideas that were discussed and presented at the conference. It includes works on diverse fields from nanomaterials to fuel cells, photocatalysis to ferromagnetism, application studies to fundamental studies.
The works of the 1991 Nobel prize winner in Physics, Pierre-Gilles de Gennes, have transformed condensed matter physics. Over the last three decades, he has left his indelible mark on an astonishing variety of condensed matter topics — magnets, superconductors, liquid crystals, polymers, interfaces, wetting and adhesions, and chirality. In doing so, he has bridged the gap between solid state physics and physical chemistry, and has forged close links between experimentalists and theoreticians.In awarding him the 1991 Nobel prize for his theoretical studies on liquid crystals and polymers, the Nobel foundation has paid tribute to his undoubted genius in discovering mathematical simplicity and elegance in the most complex and “messy” of systems. His deep insights into these fields have enabled others to exploit liquid crystals in technology and have paved the way for physicists to work on polymers.SIMPLE VIEWS ON CONDENSED MATTER presents a personal selection of the major works of de Gennes. It comes complete with afterthoughts by the author on his main papers, explaining their successes or weaknesses, and the current views on each special problem. This collector's volume contains all the important works of de Gennes which have made a lasting impact on our understanding of condensed matter, and serves as an essential reference book for all condensed matter physicists and physical chemists. It also bears testimony to the genius of a remarkable man, and should be a source of inspiration for aspiring scientists around the world.