Download Free Concurrent Systems Book in PDF and EPUB Free Download. You can read online Concurrent Systems and write the review.

Reactive systems are computing systems which are interactive, such as real-time systems, operating systems, concurrent systems, control systems, etc. They are among the most difficult computing systems to program. Temporal logic is a formal tool/language which yields excellent results in specifying reactive systems. This volume, the first of two, subtitled Specification, has a self-contained introduction to temporal logic and, more important, an introduction to the computational model for reactive programs, developed by Zohar Manna and Amir Pnueli of Stanford University and the Weizmann Institute of Science, Israel, respectively.
CSP notation has been used extensively for teaching and applying concurrency theory, ever since the publication of the text Communicating Sequential Processes by C.A.R. Hoare in 1985. Both a programming language and a specification language, the theory of CSP helps users to understand concurrent systems, and to decide whether a program meets its specification. As a member of the family of process algebras, the concepts of communication and interaction are presented in an algebraic style. An invaluable reference on the state of the art in CSP, Understanding Concurrent Systems also serves as a comprehensive introduction to the field, in addition to providing material for a number of more advanced courses. A first point of reference for anyone wanting to use CSP or learn about its theory, the book also introduces other views of concurrency, using CSP to model and explain these. The text is fully integrated with CSP-based tools such as FDR, and describes how to create new tools based on FDR. Most of the book relies on no theoretical background other than a basic knowledge of sets and sequences. Sophisticated mathematical arguments are avoided whenever possible. Topics and features: presents a comprehensive introduction to CSP; discusses the latest advances in CSP, covering topics of operational semantics, denotational models, finite observation models and infinite-behaviour models, and algebraic semantics; explores the practical application of CSP, including timed modelling, discrete modelling, parameterised verifications and the state explosion problem, and advanced topics in the use of FDR; examines the ability of CSP to describe and enable reasoning about parallel systems modelled in other paradigms; covers a broad variety of concurrent systems, including combinatorial, timed, priority-based, mobile, shared variable, statecharts, buffered and asynchronous systems; contains exercises and case studies to support the text; supplies further tools and information at the associated website: http://www.comlab.ox.ac.uk/ucs/. From undergraduate students of computer science in need of an introduction to the area, to researchers and practitioners desiring a more in-depth understanding of theory and practice of concurrent systems, this broad-ranging text/reference is essential reading for anyone interested in Hoare’s CSP.
Object-Z is an object-oriented extension of the formal specification language Z. It adds to Z notions of classes and objects, and inheritance and polymorphism. By extending Z's semantic basis, it enables the specification of systems as collections of independent objects in which self and mutual referencing are possible. The Object-Z Specification Language presents a comprehensive description of Object-Z including discussions of semantic issues, definitions of all language constructs, type rules and other rules of usage, specification guidelines, and a full concrete syntax. It will enable you to confidently construct Object-Z specifications and is intended as a reference manual to keep by your side as you use and learn to use Object-Z. The Object-Z Specification Language is suitable as a textbook or as a secondary text for a graduate-level course, and as a reference for researchers and practitioners in industry.
Concurrent systems abound in human experience but their fully adequate conceptualization as yet eludes our most able thinkers. The COSY (ConcurrentSystem) notation and theory was developed in the last decade as one of a number of mathematical approaches for conceptualizing and analyzing concurrent and reactive systems. The COSY approach extends theconventional notions of grammar and automaton from formal language and automata theory to collections of "synchronized" grammars and automata, permitting system specification and analysis of "true" concurrency without reduction to non-determinism. COSY theory is developed to a great level of detail and constitutes the first uniform and self-contained presentationof all results about COSY published in the past, as well as including many new results. COSY theory is used to analyze a sufficient number of typical problems involving concurrency, synchronization and scheduling, to allow the reader to apply the techniques presented tosimilar problems. The COSY model is also related to many alternative models of concurrency, particularly Petri Nets, Communicating Sequential Processes and the Calculus of Communicating Systems.
A text intended as a modern replacement for a first course in operating systems modern in the sense that concurrency is a central focus throughout; distributed systems are treated as the norm rather than single-processor systems, and effective links are provided to other systems courses. It is also
This volume features the proceedings of the 14th ISPE Conference on Concurrent Engineering, held in São José dos Campos, São Paulo, Brazil, on the 16th – 20th of July 2007. It highlights the application of concurrent engineering to the development of complex systems.
This book describes the concepts and methods used in the software design of real-time systems. The author outlines the characteristics of real-time systems, describes the role of software design in real-time system development, surveys and compares some software design methods for real-time systems, and outlines techniques for the verification and validation of real-time system designs.
This book addresses the design of such tools for correct-by-construction synthesis of supervisors for systems and specifications represented in the discrete-event framework. The approach employed uses Petri nets as discrete-event models and structural methods for the synthesis of supervisors, and may lead to significant computational benefits. Highlighting recent progress in the design of supervisors by structural methods, the book represents a novel contribution to the field. One of the main features of the presentation is the demonstration that structural methods can address a variety of supervisor specifications under diverse supervision settings.
The cooperation test [Apt, Francez & de Roever] was originally conceived to capture the proof theoretical analogue of distributed message exchange between disjoint processes, as opposed to the interference freedom test [Owicki & Gries], being the proof theoretical analogue of concurrent communication by means of interference through jointly shared variables. Some authors ([Levin & Gries, Lamport & Schneider, Schlichting and Schneider]) stress that both forms of communication can be proof theoretically characterized using interference freedom only, since proofs for both ultimately amount to an invariance proof of a big global assertion [Ashcroft], invariance of whose parts amounts to interference freedom. Yet I feel that the characteristic nature of the cooperation test is still preserved in the analysis of these authors, because in their analysis of CSP the part dealing with interference freedom specializes to maintenance of a global invariant, the expression of which requires per process the introduction of auxiliary variables which are updated in that process only, thus preserving the concept of disjointness (as opposed to sharing), since now all variables from different processes are disjoint. The cooperation test has been applied to characterize concurrent communication as occurring in Hoare's Communicating Sequential Processes (CSP) [Hoare 2], Ichbiah's ADA [ARM], and Brinch Hansen's Distributed Processes (DP) [Brinch Hansen]. This characterization has been certified through soundness and completeness proofs [Apt 2, Gerth]. As in the interference freedom test this characterization consists of two stages, a local sequential stage and a global stage.