Download Free Concrete In Marine Environment Book in PDF and EPUB Free Download. You can read online Concrete In Marine Environment and write the review.

Marine Concrete Structures: Design, Durability and Performance comprehensively examines structures located in, under, or in close proximity to the sea. A major emphasis of the book is on the long-term performance of marine concrete structures that not only represent major infrastructure investment and provision, but are also required to operate with minimal maintenance. Chapters review the design, specification, construction, and operation of marine concrete structures, and examine their performance and durability in the marine environment. A number of case studies of significant marine concrete structures from around the world are included which help to reinforce the principles outlined in earlier chapters and provide useful background to these types of structures. The result is a thorough and up-to-date reference source that engineers, researchers, and postgraduate students in this field will find invaluable. - Covers, in detail, the design, specification, construction, and operation of marine concrete structures - Examines the properties and performance of concrete in the marine environment - Provides case studies on significant marine concrete structures and durability-based design from around the world
Concrete has clearly emerged as the most economical and durable material for the building of the vast majority of marine structures. Reinforced concrete too has overcome the technological problems making it a suitable material for the construction of advanced marine structures such as offshore drilling platforms, superspan bridges and undersea tunn
By designing in corrosion prevention and through preventive maintenance, the overall service cost of a concrete structure can be substantially reduced. This book takes a probabilistic approach to the engineering design issues for controlling durability and service life of concrete structures in severe environments. Many durability problems are caused by poor quality control as well as special problems during concrete construction. The issue of construction quality and variability need to be grasped before durability can be successfully controlled. This book helps by giving: reviews of field performance, deteriorating processes and current codes and practice methods for calculation of corrosion probability; performance-based concrete quality control; corrosion prevention and preventive maintenance calculation of life cycle costs and life cycle assessment recommended job specifications. Internationally relevant with a practical focus, this is the essential guide for consulting and construction engineers involved in the design and execution of new concrete structures.
Describing the nature of the marine environment and the effects of man-made structures on the behaviour of the sea, this books deals with hydraulic design, the material properties of concrete and the design and specification of structures for coastal environments.
This guide aims to distil conclusions from existing research and practical experience, develop good practice guidance on marine concrete materials selection and design, and set out guidance on pre-casting of a variety of elements.
Concrete and cement-based materials must operate in increasingly aggressive aqueous environments, which may be either natural or industrial. These materials may suffer degradation in which ion addition and/or ion exchange reactions occur, leading to a breakdown of the matrix microstructure and consequent weakening. Sometimes this degradation can be extremely rapid and serious such as in acidic environments, while in other cases degradation occurs over long periods. Consequences of material failure are usually severe – adversely affecting the health and well-being of human communities and disturbing ecological balances. There are also large direct costs of maintaining and replacing deteriorated infrastructure and indirect costs from loss of production during maintenance work, which place a great burden on society. The focus of this book is on addressing issues concerning performance of cement-based materials in aggressive aqueous environments , by way of this State-of-the-Art Report. The book represents the work of many well-known and respected authors who contributed chapters or parts of chapters. Four main themes were addressed: I. Nature and kinetics of degradation and deterioration mechanisms of cement-based materials in aggressive aqueous environments, II. Modelling of deterioration in such environments, III. Test methods to assess performance of cement-based materials in such environments, and which can be used to characterise and rate relative performance and inform long term predictions, IV. Engineering implications and consequences of deterioration in aggressive aqueous environments, and engineering approaches to the problem.
The two themes of integration of structural and durability design, and integration of concrete technologies in relation to global environmental issues are drawn together in this book. It presents the views of distinguished international researchers and engineers on these key topics as the 21st century approaches. Derived from a workshop on rational design of concrete structures held in Hakodate, Japan, in August 1995, the book provides a focus for debate about the ways in which concrete technologies around the world must respond to the necessity of ensuring that concrete construction achieves higher levels of durability, and about the growing imperative to meet higher environmental standards in concrete production and use.
This book provides an updated state-of-the-art review on new developments in alkali-activation. The main binder of concrete, Portland cement, represents almost 80% of the total CO2 emissions of concrete which are about 6 to 7% of the Planet's total CO2 emissions. This is particularly serious in the current context of climate change and it could get even worse because the demand for Portland cement is expected to increase by almost 200% by 2050 from 2010 levels, reaching 6000 million tons/year. Alkali-activated binders represent an alternative to Portland cement having higher durability and a lower CO2 footprint. - Reviews the chemistry, mix design, manufacture and properties of alkali-activated cement-based concrete binders - Considers performance in adverse environmental conditions. - Offers equal emphasis on the science behind the technology and its use in civil engineering.
Steel-reinforced concrete is used ubiquitously as a building material due to its unique combination of the high compressive strength of concrete and the high tensile strength of steel. Therefore, reinforced concrete is an ideal composite material that is used for a wide range of applications in structural engineering such as buildings, bridges, tunnels, harbor quays, foundations, tanks and pipes. To ensure durability of these structures, however, measures must be taken to prevent, diagnose and, if necessary, repair damage to the material especially due to corrosion of the steel reinforcement. The book examines the different aspects of corrosion of steel in concrete, starting from basic and essential mechanisms of the phenomenon, moving up to practical consequences for designers, contractors and owners both for new and existing reinforced and prestressed concrete structures. It covers general aspects of corrosion and protection of reinforcement, forms of attack in the presence of carbonation and chlorides, problems of hydrogen embrittlement as well as techniques of diagnosis, monitoring and repair. This second edition updates the contents with recent findings on the different topics considered and bibliographic references, with particular attention to recent European standards. This book is a self-contained treatment for civil and construction engineers, material scientists, advanced students and architects concerned with the design and maintenance of reinforced concrete structures. Readers will benefit from the knowledge, tools, and methods needed to understand corrosion in reinforced concrete and how to prevent it or keep it within acceptable limits.