Download Free Conceptual Model And Process Descriptor Formulations For Fate And Transport Of Uxo Book in PDF and EPUB Free Download. You can read online Conceptual Model And Process Descriptor Formulations For Fate And Transport Of Uxo and write the review.

Primary release mechanisms for explosives from UXO are identified and conceptual models for UXO fate and transport were developed for the upland and aquatic environments. The state of development for explosives release mechanisms and process descriptor formulations for fate and transport of explosives from UXO were investigated and important data gaps were identified. The most extensive data gaps are associated with source term, which encompasses the movement of explosives from UXO into the environment. The source term is strongly affected by UXO integrity, munition type, and the environment in which the munition resides. For a cracked or corroded munition, dissolution rate of the explosive in the munition is one of the more important parameters affecting the fate and transport of the explosive into the environment. Explosives exiting corroded UXO could be transformed by exposure to iron, a process shown to strongly affect explosives. Adsorption of TNT and RDX by soils can be estimated based on soil cation exchange capacity. Research was also conducted to explore the relationship between HMX adsorption and soil physical characteristics and the affects of light on TNT disappearance from aquatic systems. Disappearance of TNT from soil/water systems is not appreciably affected by exposure to light. This demonstrates that processes which act independently of light are most important in a soil/water system and will control the disappearance of TNT.
Environmental pollution as a consequence of diverse human activities has become a global concern. Urbanization, mining, industrial revolution, burning of fossil fuels/firewood and poor agricultural practices, in addition to improper dumping of waste products, are largely responsible for the undesirable change in the environment composition. Environmental pollution is mainly classified as air pollution, water pollution, land pollution, noise pollution, thermal pollution, light pollution, and plastic pollution. Nowadays, it has been realized that with the increasing environmental pollution, impurities may accumulate in plants, which are required for basic human uses such as for food, clothing, medicine, and so on. Environmental pollution has tremendous impacts on phenological events, structural patterns, physiological phenomena, biochemical status, and the cellular and molecular features of plants. Exposure to environmental pollution induces acute or chronic injury depending on the pollutant concentration, exposure duration, season and plant species. Moreover, the global rise of greenhouse gases such as carbon monoxide, carbon dioxide, nitrous oxides, methane, chlorofluorocarbons and ozone in the atmosphere is among the major threats to the biodiversity. They have also shown visible impacts on life cycles and distribution of various plant species. Anthropogenic activities, including the fossil-fuel combustion in particular, are responsible for steady increases in the atmospheric greenhouse gases concentrations. This phenomenon accelerates the global heating. Studies have suggested that the changes in carbon dioxide concentrations, rainfall and temperature have greatly influenced the plant physiological and metabolic activities including the formation of biologically active ingredients. Taken together, plants interact with pollutants, and cause adverse ecological and economic outcomes. Therefore, plant response to pollutants requires more investigation in terms of damage detection, adaptation, tolerance, and the physiological and molecular responses. The complex interplay among other emerging pollutants, namely, radioisotopes, cell-phone radiation, nanoparticles, nanocomposites, heavy metals etc. and their impact on plant adaptation strategies, and possibility to recover, mitigation, phytoremediation, etc., also needs to be explored. Further, it is necessary to elucidate better the process of the pollutant’s uptake by plant and accumulation in the food chain, and the plant resistance capability against the various kinds of environmental pollutants. In this context, the identification of tolerance mechanisms in plants against pollutants can help in developing eco-friendly technologies, which requires molecular approaches to increase plant tolerance to pollutants, such as plant transformation and genetic modifications. Pollutant-induced overproduction of reactive oxygen species that cause DNA damage and apoptosis-related alterations, has also been examined. They also trigger changes at the levels of transcriptome, proteome, and metabolome, which has been discussed in this book.
This title is the first comprehensive book on sampling and modern sample preparation techniques and has several main objectives: to facilitate recognition of sample preparation as both an integral part of the analytical process; to present a fundamental basis and unified theoretical approach for the professional development of sample preparation; to emphasize new developments in sample preparation technology; and to highlight the future impact of sample preparation on new directions in analytical science, particularly automation, miniaturization and field implementation. Until recently, there has been relatively little scientific interest in sampling and sample preparation, however this situation is presently changing as sampling and sample preparation become integral parts of the analytical process with their own unique challenges and research opportunities. Sampling and Sample Preparation for Field and Laboratory is an essential resource for all analytical chemists, and in particular those involved in method development. Not only does it cover the fundamental aspects of extraction, it also covers applications in various matrices and includes sampling strategies and equipment and how these can be integrated into the analytical process for maximum efficiency.
Advanced Oxidation Processes (AOPs) rely on the efficient generation of reactive radical species and are increasingly attractive options for water remediation from a wide variety of organic micropollutants of human health and/or environmental concern. Advanced Oxidation Processes for Water Treatment covers the key advanced oxidation processes developed for chemical contaminant destruction in polluted water sources, some of which have been implemented successfully at water treatment plants around the world. The book is structured in two sections; the first part is dedicated to the most relevant AOPs, whereas the topics covered in the second section include the photochemistry of chemical contaminants in the aquatic environment, advanced water treatment for water reuse, implementation of advanced treatment processes for drinking water production at a state-of-the art water treatment plant in Europe, advanced treatment of municipal and industrial wastewater, and green technologies for water remediation. The advanced oxidation processes discussed in the book cover the following aspects: - Process principles including the most recent scientific findings and interpretation. - Classes of compounds suitable to AOP treatment and examples of reaction mechanisms. - Chemical and photochemical degradation kinetics and modelling. - Water quality impact on process performance and practical considerations on process parameter selection criteria. - Process limitations and byproduct formation and strategies to mitigate any potential adverse effects on the treated water quality. - AOP equipment design and economics considerations. - Research studies and outcomes. - Case studies relevant to process implementation to water treatment. - Commercial applications. - Future research needs. Advanced Oxidation Processes for Water Treatment presents the most recent scientific and technological achievements in process understanding and implementation, and addresses to anyone interested in water remediation, including water industry professionals, consulting engineers, regulators, academics, students. Editor: Mihaela I. Stefan - Trojan Technologies - Canada
At the rate that government and nongovernmental organizations are clearing existing landmines, it will take 450-500 years to rid the world of them. Concerned about the slow pace of demining, the Office of Science and Technology asked RAND to assess potential innovative technologies being explored and to project what funding would be required to foster the development of the more promising ones. The authors of this report suggest that the federal government undertake a research and development effort to develop a multisensor mine detection system over the next five to eight years.
Filled with practical applications and research, Biodegradation of Nitroaromatic Compounds and Explosives presents an international perspective on environmental contamination from explosives. It covers biodegradation strategies for DNT and a wide variety of other nitroaromatic compounds of environmental significance and makes the information access
'Blown to Bits' is about how the digital explosion is changing everything. The text explains the technology, why it creates so many surprises and why things often don't work the way we expect them to. It is also about things the information explosion is destroying: old assumptions about who is really in control of our lives.
Just a few meters below the Earth's surface lie features of great importance, from geological faults which can produce devastating earthquakes, to lost archaeological treasures. This refreshing, up-to-date book explores the foundations of interpretation theory and the latest developments in near-surface techniques, used to complement traditional geophysical methods for deep-exploration targets. Clear but rigorous, the book explains theory and practice in simple physical terms, supported by intermediate-level mathematics. Techniques covered include magnetics, resistivity, seismic reflection and refraction, surface waves, induced polarization, self-potential, electromagnetic induction, ground-penetrating radar, magnetic resonance, interferometry, seismoelectric and more. Sections on data analysis and inverse theory are provided and chapters are illustrated by case studies, giving students and professionals the tools to plan, conduct and analyze a near-surface geophysical survey. This is an important textbook for advanced-undergraduate and graduate students in geophysics and a valuable reference for practising geophysicists, geologists, hydrologists, archaeologists, and civil and geotechnical engineers.