Download Free Conceptual Design Of Chemical Processes Book in PDF and EPUB Free Download. You can read online Conceptual Design Of Chemical Processes and write the review.

This text explains the concepts behind process design. It uses a case study approach, guiding readers through realistic design problems, and referring back to these cases at the end of each chapter. Throughout, the author uses shortcut techniques that allow engineers to obtain the whole focus for a design in a very short period (generally less than two days).
Chemical Engineering Design, Second Edition, deals with the application of chemical engineering principles to the design of chemical processes and equipment. Revised throughout, this edition has been specifically developed for the U.S. market. It provides the latest US codes and standards, including API, ASME and ISA design codes and ANSI standards. It contains new discussions of conceptual plant design, flowsheet development, and revamp design; extended coverage of capital cost estimation, process costing, and economics; and new chapters on equipment selection, reactor design, and solids handling processes. A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data, and Excel spreadsheet calculations, plus over 150 Patent References for downloading from the companion website. Extensive instructor resources, including 1170 lecture slides and a fully worked solutions manual are available to adopting instructors. This text is designed for chemical and biochemical engineering students (senior undergraduate year, plus appropriate for capstone design courses where taken, plus graduates) and lecturers/tutors, and professionals in industry (chemical process, biochemical, pharmaceutical, petrochemical sectors). New to this edition: - Revised organization into Part I: Process Design, and Part II: Plant Design. The broad themes of Part I are flowsheet development, economic analysis, safety and environmental impact and optimization. Part II contains chapters on equipment design and selection that can be used as supplements to a lecture course or as essential references for students or practicing engineers working on design projects. - New discussion of conceptual plant design, flowsheet development and revamp design - Significantly increased coverage of capital cost estimation, process costing and economics - New chapters on equipment selection, reactor design and solids handling processes - New sections on fermentation, adsorption, membrane separations, ion exchange and chromatography - Increased coverage of batch processing, food, pharmaceutical and biological processes - All equipment chapters in Part II revised and updated with current information - Updated throughout for latest US codes and standards, including API, ASME and ISA design codes and ANSI standards - Additional worked examples and homework problems - The most complete and up to date coverage of equipment selection - 108 realistic commercial design projects from diverse industries - A rigorous pedagogy assists learning, with detailed worked examples, end of chapter exercises, plus supporting data and Excel spreadsheet calculations plus over 150 Patent References, for downloading from the companion website - Extensive instructor resources: 1170 lecture slides plus fully worked solutions manual available to adopting instructors
The Leading Integrated Chemical Process Design Guide: Now with New Problems, New Projects, and More More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Third Edition, presents design as a creative process that integrates both the big picture and the small details–and knows which to stress when, and why. Realistic from start to finish, this book moves readers beyond classroom exercises into open-ended, real-world process problem solving. The authors introduce integrated techniques for every facet of the discipline, from finance to operations, new plant design to existing process optimization. This fully updated Third Edition presents entirely new problems at the end of every chapter. It also adds extensive coverage of batch process design, including realistic examples of equipment sizing for batch sequencing; batch scheduling for multi-product plants; improving production via intermediate storage and parallel equipment; and new optimization techniques specifically for batch processes. Coverage includes Conceptualizing and analyzing chemical processes: flow diagrams, tracing, process conditions, and more Chemical process economics: analyzing capital and manufacturing costs, and predicting or assessing profitability Synthesizing and optimizing chemical processing: experience-based principles, BFD/PFD, simulations, and more Analyzing process performance via I/O models, performance curves, and other tools Process troubleshooting and “debottlenecking” Chemical engineering design and society: ethics, professionalism, health, safety, and new “green engineering” techniques Participating successfully in chemical engineering design teams Analysis, Synthesis, and Design of Chemical Processes, Third Edition, draws on nearly 35 years of innovative chemical engineering instruction at West Virginia University. It includes suggested curricula for both single-semester and year-long design courses; case studies and design projects with practical applications; and appendixes with current equipment cost data and preliminary design information for eleven chemical processes–including seven brand new to this edition.
Sustainability in the Design, Synthesis and Analysis of Chemical Engineering Processes is an edited collection of contributions from leaders in their field. It takes a holistic view of sustainability in chemical and process engineering design, and incorporates economic analysis and human dimensions. Ruiz-Mercado and Cabezas have brought to this book their experience of researching sustainable process design and life cycle sustainability evaluation to assist with development in government, industry and academia. This book takes a practical, step-by-step approach to designing sustainable plants and processes by starting from chemical engineering fundamentals. This method enables readers to achieve new process design approaches with high influence and less complexity. It will also help to incorporate sustainability at the early stages of project life, and build up multiple systems level perspectives. Ruiz-Mercado and Cabezas' book is the only book on the market that looks at process sustainability from a chemical engineering fundamentals perspective. - Improve plants, processes and products with sustainability in mind; from conceptual design to life cycle assessment - Avoid retro fitting costs by planning for sustainability concerns at the start of the design process - Link sustainability to the chemical engineering fundamentals
Applications in Design and Simulation of Sustainable Chemical Processes addresses the challenging applications in designing eco-friendly but efficient chemical processes, including recent advances in chemistry and catalysis that rely on renewable raw materials. Grounded in the fundamental knowledge of chemistry, thermodynamics, chemical reaction engineering and unit operations, this book is an indispensable resource for developing and designing innovating chemical processes by employing computer simulations as an efficient conceptual tool. Targeted to graduate and post graduate students in chemical engineering, as well as to professionals, the book aims to advance their skills in process innovation and conceptual design. The work completes the book Integrated Design and Simulation of Chemical Processes by Elsevier (2014) authored by the same team. - Includes comprehensive case studies of innovative processes based on renewable raw materials - Outlines Process Systems Engineering approach with emphasis on systematic design methods - Employs steady-state and dynamic process simulation as problem analysis and flowsheet creation tool - Applies modern concepts, as process integration and intensification, for enhancing the sustainability
Written by a highly regarded author with industrial and academic experience, this new edition of an established bestselling book provides practical guidance for students, researchers, and those in chemical engineering. The book includes a new section on sustainable energy, with sections on carbon capture and sequestration, as a result of increasing environmental awareness; and a companion website that includes problems, worked solutions, and Excel spreadsheets to enable students to carry out complex calculations.
Over the last 20 years, fundamental design concepts and advanced computer modeling have revolutionized process design for chemical engineering. Team work and creative problem solving are still the building blocks of successful design, but new design concepts and novel mathematical programming models based on computer-based tools have taken out much of the guess-work. This book presents the new revolutionary knowledge, taking a systematic approach to design at all levels.
This practical how-to-do book deals with the design of sustainable chemical processes by means of systematic methods aided by computer simulation. Ample case studies illustrate generic creative issues, as well as the efficient use of simulation techniques, with each one standing for an important issue taken from practice. The didactic approach guides readers from basic knowledge to mastering complex flow-sheets, starting with chemistry and thermodynamics, via process synthesis, efficient use of energy and waste minimization, right up to plant-wide control and process dynamics. The simulation results are compared with flow-sheets and performance indices of actual industrial licensed processes, while the complete input data for all the case studies is also provided, allowing readers to reproduce the results with their own simulators. For everyone interested in the design of innovative chemical processes.
This is the first book dedicated to the entire field of integrated chemical processes, covering process design, analysis, operation and control of these processes. Both the editors and authors are internationally recognized experts from different fields in industry and academia, and their contributions describe all aspects of intelligent integrations of chemical reactions and physical unit operations such as heat exchange, separational operations and mechanical unit operations. As a unique feature, the book also introduces new concepts for treating different integration concepts on a generalized basis. Of great value to a broad audience of researchers and engineers from industry and academia.
The book presents, in a unified manner, various crystallization design methods. It discusses in detail the geometric framework for representing complex phase behavior involving multiple solutes, enantiomers, hydrates, compounds, polymorphs, and solid solutions through visualization of high-dimensional phase diagrams. It also describes how the impact of transport processes is accounted for using kinetically controlled process paths.