Download Free Computing System Reliability Models And Analysis Book in PDF and EPUB Free Download. You can read online Computing System Reliability Models And Analysis and write the review.

Computing systems are of growing importance because of their wide use in many areas including those in safety-critical systems. This book describes the basic models and approaches to the reliability analysis of such systems. An extensive review is provided and models are categorized into different types. Some Markov models are extended to the analysis of some specific computing systems such as combined software and hardware, imperfect debugging processes, failure correlation, multi-state systems, heterogeneous subsystems, etc. One of the aims of the presentation is that based on the sound analysis and simplicity of the approaches, the use of Markov models can be better implemented in the computing system reliability.
Computing systems are of growing importance because of their wide use in many areas including those in safety-critical systems. This book describes the basic models and approaches to the reliability analysis of such systems. An extensive review is provided and models are categorized into different types. Some Markov models are extended to the analysis of some specific computing systems such as combined software and hardware, imperfect debugging processes, failure correlation, multi-state systems, heterogeneous subsystems, etc. One of the aims of the presentation is that based on the sound analysis and simplicity of the approaches, the use of Markov models can be better implemented in the computing system reliability.
Performance and Reliability Analysis of Computer Systems: An Example-Based Approach Using the SHARPE Software Package provides a variety of probabilistic, discrete-state models used to assess the reliability and performance of computer and communication systems. The models included are combinatorial reliability models (reliability block diagrams, fault trees and reliability graphs), directed, acyclic task precedence graphs, Markov and semi-Markov models (including Markov reward models), product-form queueing networks and generalized stochastic Petri nets. A practical approach to system modeling is followed; all of the examples described are solved and analyzed using the SHARPE tool. In structuring the book, the authors have been careful to provide the reader with a methodological approach to analytical modeling techniques. These techniques are not seen as alternatives but rather as an integral part of a single process of assessment which, by hierarchically combining results from different kinds of models, makes it possible to use state-space methods for those parts of a system that require them and non-state-space methods for the more well-behaved parts of the system. The SHARPE (Symbolic Hierarchical Automated Reliability and Performance Evaluator) package is the `toolchest' that allows the authors to specify stochastic models easily and solve them quickly, adopting model hierarchies and very efficient solution techniques. All the models described in the book are specified and solved using the SHARPE language; its syntax is described and the source code of almost all the examples discussed is provided. Audience: Suitable for use in advanced level courses covering reliability and performance of computer and communications systems and by researchers and practicing engineers whose work involves modeling of system performance and reliability.
Learn about the techniques used for evaluating the reliability and availability of engineered systems with this comprehensive guide.
Computing systems are of growing importance because of their wide use in many areas including those in safety-critical systems. This book describes the basic models and approaches to the reliability analysis of such systems. An extensive review is provided and models are categorized into different types. Some Markov models are extended to the analysis of some specific computing systems such as combined software and hardware, imperfect debugging processes, failure correlation, multi-state systems, heterogeneous subsystems, etc. One of the aims of the presentation is that based on the sound analysis and simplicity of the approaches, the use of Markov models can be better implemented in the computing system reliability.
Computer software reliability has never been so important. Computers are used in areas as diverse as air traffic control, nuclear reactors, real-time military, industrial process control, security system control, biometric scan-systems, automotive, mechanical and safety control, and hospital patient monitoring systems. Many of these applications require critical functionality as software applications increase in size and complexity. This book is an introduction to software reliability engineering and a survey of the state-of-the-art techniques, methodologies and tools used to assess the reliability of software and combined software-hardware systems. Current research results are reported and future directions are signposted. This text will interest: graduate students as a course textbook introducing reliability engineering software; reliability engineers as a broad, up-to-date survey of the field; and researchers and lecturers in universities and research institutions as a one-volume reference.
As our modern information-age society grows in complexity both in terms of embedded systems and applications, the problems and challenges in reliability become ever more complex. Bringing together many of the leading experts in the field, this volume presents a broad picture of current research on system modeling and optimization in reliability and its applications.The book comprises twenty-three chapters organized into four parts: Reliability Modeling, Software Quality Engineering, Software Reliability, and Maintenance and Inspection Policies. These sections cover a wide range of important topics, including system reliability modeling, optimization, software reliability and quality, maintenance theory and inspection, reliability failure analysis, sampling plans and schemes, software development processes and improvement, stochastic process modeling, statistical distributions and analysis, fault-tolerant performance, software measurements and cost effectiveness, queueing theory and applications, system availability, reliability of repairable systems, testing sampling inspection, software capability maturity model, accelerated life modeling, statistical control, and HALT testing.
Recent Advances in System Reliability Engineering describes and evaluates the latest tools, techniques, strategies, and methods in this topic for a variety of applications. Special emphasis is put on simulation and modelling technology which is growing in influence in industry, and presents challenges as well as opportunities to reliability and systems engineers. Several manufacturing engineering applications are addressed, making this a particularly valuable reference for readers in that sector. - Contains comprehensive discussions on state-of-the-art tools, techniques, and strategies from industry - Connects the latest academic research to applications in industry including system reliability, safety assessment, and preventive maintenance - Gives an in-depth analysis of the benefits and applications of modelling and simulation to reliability
This book summarizes the recent advances in software reliability modelling. Almost all the existing models are classified and the most interesting models are described in detail.Because of the application of software in many industrial, military and commercial systems, software reliability has become an important research area. Although there are many models and results appeared in different journals and conference proceedings, there is a lack of systematic publications on this subject. The aim of this book is to provide an overview of this area and provide software reliability researchers and analysts with a systematic study of the existing results. This book can also be used as a reference book for other software engineers and reliability theoreticians interested in this area.
A comprehensive introduction to reliability analysis. The first section provides a thorough but elementary prologue to reliability theory. The latter half comprises more advanced analytical tools including Markov processes, renewal theory, life data analysis, accelerated life testing and Bayesian reliability analysis. Features numerous worked examples. Each chapter concludes with a selection of problems plus additional material on applications.