Download Free Computational Theoretical Organic Chemistry Book in PDF and EPUB Free Download. You can read online Computational Theoretical Organic Chemistry and write the review.

This volume is devoted to the various aspects of theoretical organic chemistry. In the nineteenth century, organic chemistry was primarily an experimental, empirical science. Throughout the twentieth century, the emphasis has been continually shifting to a more theoretical approach. Today, theoretical organic chemistry is a distinct area of research, with strong links to theoretical physical chemistry, quantum chemistry, computational chemistry, and physical organic chemistry.The objective in this volume has been to provide a cross-section of a number of interesting topics in theoretical organic chemistry, starting with a detailed account of the historical development of this discipline and including topics devoted to quantum chemistry, physical properties of organic compounds, their reactivity, their biological activity, and their excited-state properties.
The Second Edition demonstrates how computational chemistry continues to shed new light on organic chemistry The Second Edition of author Steven Bachrach’s highly acclaimed Computational Organic Chemistry reflects the tremendous advances in computational methods since the publication of the First Edition, explaining how these advances have shaped our current understanding of organic chemistry. Readers familiar with the First Edition will discover new and revised material in all chapters, including new case studies and examples. There’s also a new chapter dedicated to computational enzymology that demonstrates how principles of quantum mechanics applied to organic reactions can be extended to biological systems. Computational Organic Chemistry covers a broad range of problems and challenges in organic chemistry where computational chemistry has played a significant role in developing new theories or where it has provided additional evidence to support experimentally derived insights. Readers do not have to be experts in quantum mechanics. The first chapter of the book introduces all of the major theoretical concepts and definitions of quantum mechanics followed by a chapter dedicated to computed spectral properties and structure identification. Next, the book covers: Fundamentals of organic chemistry Pericyclic reactions Diradicals and carbenes Organic reactions of anions Solution-phase organic chemistry Organic reaction dynamics The final chapter offers new computational approaches to understand enzymes. The book features interviews with preeminent computational chemists, underscoring the role of collaboration in developing new science. Three of these interviews are new to this edition. Readers interested in exploring individual topics in greater depth should turn to the book’s ancillary website www.comporgchem.com, which offers updates and supporting information. Plus, every cited article that is available in electronic form is listed with a link to the article.
This book provides state-of-the-art information on how studies in applied theoretical organic chemistry are conducted. It highlights the many approaches and tools available to those interested in using computational chemistry to predict and rationalize structures and reactivity of organic molecules. Chapters not only describe theoretical techniques in detail, but also describe recent applications and offer practical advice.Authored by many of the world leaders in the field of applied theoretical chemistry, this book is perfect for both practitioners of computational chemistry and synthetic and mechanistic organic chemists curious about applying computational techniques to their research.Related Link(s)
Computational Photochemistry, Volume 16 provides an overview of general strategies currently used to investigate photochemical processes. Whilst contributing to establishing a branch of computational chemistry that deals with the properties and reactivity of photoexcited molecules, the book also provides insight into the conceptual and methodological research lines in computational photochemistry. Packed with examples of applications of modelling of basic photochemical reactions and the computer-aided development of novel materials in the field of photodegradation (paints), photoprotection (sunscreens), color regulation (photochromic devices) and fluorescent probes, this book is particularly useful to anyone interested in the effect of light on molecules and materials.* Provides an overview of computational photochemistry, dealing with principles and applications* Demonstrates techniques that can be used in the computer-aided design of novel photo responsive materials* Written by experts in computational photochemistry
"Introduction to Theoretical Organic Chemistry" provides an introduction for chemists with a limited mathematical background, yet need a working understanding of quantum chemistry as applied to problems in organic chemistry. This book is unique in that it is written at the level of the advanced undergraduate or beginning graduate student in organic chemistry, whose exposure to theoretical chemistry is relatively recent. It fills a niche in that most books on theoretical organic chemistry are written by theoretical or computational chemists, whereas this book is written by an organic chemist. The book covers molecular modeling computer software, and offers a useful guide to the scope and limitations of each program, along with specific examples of input and output for several of the most popular software. Numerous examples and exercises are provided.
Essentials of Computational Chemistry provides a balanced introduction to this dynamic subject. Suitable for both experimentalists and theorists, a wide range of samples and applications are included drawn from all key areas. The book carefully leads the reader thorough the necessary equations providing information explanations and reasoning where necessary and firmly placing each equation in context.
The Crystalline States of Organic Compounds is a broad survey of the techniques by which molecular crystals are investigated, modeled, and applied, starting with the fundamentals of intra- and intermolecular bonding supplemented by a concise tutorial on present-day diffraction methods, then proceeding to an examination of crystallographic databases with their statistics and of such fundamental and fast-growing topics as intermolecular potentials, polymorphism, co-crystallization, and crystal structure prediction by computer. A substantial part of the book is devoted to the techniques of choice in modern simulation, Monte Carlo and molecular dynamics, with their most recent developments and application to formed crystals and to the concomitant phases involved in nucleation and growth. Drawing on the decades-long experience of its author in teaching and research in the field of organic solid state, The Crystalline States of Organic Compounds is an indispensable source of key insights and future directions for students and researchers at any level, in academia and in industry. - Condenses theoretical information and practical methods in a single resource - Provides a guide on the use of crystallographic databases, structure statistics, and molecular simulations - Includes a large number of worked examples and tutorials, with extensive graphics and multimedia
Computational chemistry is a means of applying theoretical ideas using computers and a set of techniques for investigating chemical problems within which common questions vary from molecular geometry to the physical properties of substances. Theory and Applications of Computational Chemistry: The First Forty Years is a collection of articles on the emergence of computational chemistry. It shows the enormous breadth of theoretical and computational chemistry today and establishes how theory and computation have become increasingly linked as methodologies and technologies have advanced. Written by the pioneers in the field, the book presents historical perspectives and insights into the subject, and addresses new and current methods, as well as problems and applications in theoretical and computational chemistry. Easy to read and packed with personal insights, technical and classical information, this book provides the perfect introduction for graduate students beginning research in this area. It also provides very readable and useful reviews for theoretical chemists.* Written by well-known leading experts * Combines history, personal accounts, and theory to explain much of the field of theoretical and compuational chemistry* Is the perfect introduction to the field
This volume provides an overview of current research and recent advances in the area of energetic materials, focusing on decomposition, crystal and molecular properties. The contents and format reflect the fact that theory, experiment and computation are closely linked in this field. Since chemical decomposition is of fundamental importance in energetic performance, this volume begins with a survey of the decomposition processes of a variety of energetic compounds. This is followed by detailed studies of certain compounds and specific mechanisms, such as nitro/aci-nitro tautomerism. Chapter 6 covers the transition from decomposition to crystal properties, with molecular dynamics being the primary analytical tool. The next several chapters deal with different aspects of the crystalline state, again moving from the general to particular. There is also a discussion of methods for computing gas, liquid and solid phase heats of formation. Finally, the last portion of this volume looks at the potential of high-nitrogen molecules as energetic systems; this has been of considerable interest in recent years. Overall, this volume illustrates the progress that has been made in the field of energetic materials and some of the areas of current activity. It also indicates the challenges involved in characterizing and understanding the properties and behaviour of these compounds. The work is a unique state-of-the-art treatment of the subject, written by pre-eminent researchers in the field.
Computational chemistry has become extremely important in the last decade, being widely used in academic and industrial research. Yet there have been few books designed to teach the subject to nonspecialists. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics is an invaluable tool for teaching and researchers alike. The book provides an overview of the field, explains the basic underlying theory at a meaningful level that is not beyond beginners, and it gives numerous comparisons of different methods with one another and with experiment. The following concepts are illustrated and their possibilities and limitations are given: - potential energy surfaces; - simple and extended Hückel methods; - ab initio, AM1 and related semiempirical methods; - density functional theory (DFT). Topics are placed in a historical context, adding interest to them and removing much of their apparently arbitrary aspect. The large number of references, to all significant topics mentioned, should make this book useful not only to undergraduates but also to graduate students and academic and industrial researchers.