Download Free Computational Modeling And Simulation Of Quadrupedal Animal Movement Book in PDF and EPUB Free Download. You can read online Computational Modeling And Simulation Of Quadrupedal Animal Movement and write the review.

How can geckoes walk on the ceiling and basilisk lizards run over water? What are the aerodynamic effects that enable small insects to fly? What are the relative merits of squids' jet-propelled swimming and fishes' tail-powered swimming? Why do horses change gait as they increase speed? What determines our own vertical leap? Recent technical advances have greatly increased researchers' ability to answer these questions with certainty and in detail. This text provides an up-to-date overview of how animals run, walk, jump, crawl, swim, soar, hover, and fly. Excluding only the tiny creatures that use cilia, it covers all animals that power their movements with muscle--from roundworms to whales, clams to elephants, and gnats to albatrosses. The introduction sets out the general rules governing all modes of animal locomotion and considers the performance criteria--such as speed, endurance, and economy--that have shaped their selection. It introduces energetics and optimality as basic principles. The text then tackles each of the major modes by which animals move on land, in water, and through air. It explains the mechanisms involved and the physical and biological forces shaping those mechanisms, paying particular attention to energy costs. Focusing on general principles but extensively discussing a wide variety of individual cases, this is a superb synthesis of current knowledge about animal locomotion. It will be enormously useful to advanced undergraduates, graduate students, and a range of professional biologists, physicists, and engineers.
This book is based on the author's phD thesis, which won the 1996 ACM Doctoral Dissertation Award. The author proposes and develops an artificial life paradigm for computer graphics animation by systematically constructing artificial animals controlled by self-animating autonomous agents. The animation agents emulate the realistic appearance, movement, and behavior of individual animals, as well as the patterns of social behavior evident in groups of animals. The paradigm is based on a computational model capturing the essential characteristics common to all biological creatures: biomechanics, locomotion, perception, and behavior. The approach is validated through the implementation of a virtual marine world inhabited by a variety of lifelike artificial fish, where each fish is a functional autonomous agent.
How can neural and morphological computations be effectively combined and realized in embodied closed-loop systems (e.g., robots) such that they can become more like living creatures in their level of performance? Understanding this will lead to new technologies and a variety of applications. To tackle this research question, here, we bring together experts from different fields (including Biology, Computational Neuroscience, Robotics, and Artificial Intelligence) to share their recent findings and ideas and to update our research community. This eBook collects 17 cutting edge research articles, covering neural and morphological computations as well as the transfer of results to real world applications, like prosthesis and orthosis control and neuromorphic hardware implementation.
An engaging introduction to human and animal movement seen through the lens of mechanics. How do Olympic sprinters run so fast? Why do astronauts adopt a bounding gait on the moon? How do running shoes improve performance while preventing injuries? This engaging and generously illustrated book answers these questions by examining human and animal movement through the lens of mechanics. The authors present simple conceptual models to study walking and running and apply mechanical principles to a range of interesting examples. They explore the biology of how movement is produced, examining the structure of a muscle down to its microscopic force-generating motors. Drawing on their deep expertise, the authors describe how to create simulations that provide insight into muscle coordination during walking and running, suggest treatments to improve function following injury, and help design devices that enhance human performance.
This book constitutes the proceedings of the 13th International Conference on Simulation of Adaptive Behavior, SAB 2014, held in Castellón, Spain, in July 2014. The 32 papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. They cover the main areas in animat research, including the animat approach and methodology, perception and motor control, navigation and internal world models, learning and adaptation, evolution and collective and social behavior.
This book dealing with stance and motion was planned in June 1986 at a meeting held in Moscow and Leningrad between a group of Soviet and French scientists interested in motor control. This meeting took place in the framework of an exchange program between the USSR Academy of Seiences and the French Centre National de la Recherche Scientifique. It was very successful event and was greatly appreciated by all those who attended it. Several participants put forward the proposal that the possibility of publishing a book was worth exploring. What were the reasons for publishing a book on stance and motion ? The interest aroused in the participants by each others contributions was not a sufficiently decisive argument. It was feit, however, that a large proportion of the orginal material presented at the meeting, especially in the field of posture and locomotion but also on other aspects covered by the book could be presented in a summarized form which should appeal to a larger audience because the facts and hypotheses they contained especially those from the Soviet participants, were not very familiar among international circles, and that many scientists would appreciate having a single volume containing a survey ofthe current state of research in this field. This was also the opinion of Plenum Press, who agreed to publish the book. Each participant at the meeting submitted a paper which was examined by two referees before being accepted.
The Animals to Animats Conference brings together researchers fromethology, psychology, ecology, artificial intelligence, artificiallife, robotics, engineering, and related fields to furtherunderstanding of the behaviors and underlying mechanisms that allownatural and synthetic agents (animats) to adapt and survive inuncertain environments The Animals to Animats Conference brings together researchers from ethology, psychology, ecology, artificial intelligence, artificial life, robotics, engineering, and related fields to further understanding of the behaviors and underlying mechanisms that allow natural and synthetic agents (animats) to adapt and survive in uncertain environments. The work presented focuses on well-defined models--robotic, computer-simulation, and mathematical--that help to characterize and compare various organizational principles or architectures underlying adaptive behavior in both natural animals and animats.
This comprehensive edited treatise discusses the neurological, physiological, and cognitive aspects of interlimb coordination. It is unique in promoting a multidisciplinary perspective through introductory chapter contributions from experts in the neurosciences, experimental and developmental psychology, and kinesiology. Beginning with chapters defining the neural basis of interlimb coordination in animals, the book progresses toward an understanding of human locomotor control and coordination and the underlying brain structures and nerves that make such control possible. Section two focuses on the dynamics of interlimb coordination and the physics of movement. The final section presents information on how practice and experience affect coordination, including general skill acquisition, learning to walk, and the process involved in rhythmic tapping.
• Motivation It is our dream to understand the principles of animals’ remarkable ability for adaptive motion and to transfer such abilities to a robot. Up to now, mechanisms for generation and control of stereotyped motions and adaptive motions in well-known simple environments have been formulated to some extentandsuccessfullyappliedtorobots.However,principlesofadaptationto variousenvironmentshavenotyetbeenclari?ed,andautonomousadaptation remains unsolved as a seriously di?cult problem in robotics. Apparently, the ability of animals and robots to adapt in a real world cannot be explained or realized by one single function in a control system and mechanism. That is, adaptation in motion is induced at every level from thecentralnervoussystemtothemusculoskeletalsystem.Thus,weorganized the International Symposium on Adaptive Motion in Animals and Machines(AMAM)forscientistsandengineersconcernedwithadaptation onvariouslevelstobebroughttogethertodiscussprinciplesateachleveland to investigate principles governing total systems. • History AMAM started in Montreal (Canada) in August 2000. It was organized by H. Kimura (Japan), H. Witte (Germany), G. Taga (Japan), and K. Osuka (Japan), who had agreed that having a small symposium on motion control, with people from several ?elds coming together to discuss speci?c issues, was worthwhile. Those four organizing committee members determined the scope of AMAM as follows.