Download Free Computational Estimation And Mental Computation In Our Elementary Schools Book in PDF and EPUB Free Download. You can read online Computational Estimation And Mental Computation In Our Elementary Schools and write the review.

Mental calculations and estimations are basic, everyday skills that are essential for real-life arithmetic operations and number sense. This book presents a much needed overview and analysis of mental computation and estimation, drawing on contemporary research and empirical studies that were conducted on students, teachers and adults to cover all aspects of this complex field. Mental Computation and Estimation analyses the implications that are involved in the research, teaching and learning of mathematics and delivers effective practices that will enhance everyday learning for students. Focusing on a range of international research and studies from the School of Nature and Life Mathematics in Greece, it answers a number of important questions including: What mental calculations and estimations are, why they are important and what other mathematical concepts and cognitive behaviors are they related to? What strategies are used on mental additions, subtractions, multiplications and divisions and how are multiplication tables learned? What are the new trends in the teaching of mental calculation and estimation? An invaluable resource for all those involved in the practice and research of mathematics education, Mental Computation and Estimation will also be a useful tool for researchers, policy makers and developers of educational programs.
Mental calculations and estimations are basic, everyday skills that are essential for real-life arithmetic operations and number sense. This book presents a much needed overview and analysis of mental computation and estimation, drawing on contemporary research and empirical studies that were conducted on students, teachers and adults to cover all aspects of this complex field. Mental Computation and Estimation analyses the implications that are involved in the research, teaching and learning of mathematics and delivers effective practices that will enhance everyday learning for students. Focusing on a range of international research and studies from the School of Nature and Life Mathematics in Greece, it answers a number of important questions including: What mental calculations and estimations are, why they are important and what other mathematical concepts and cognitive behaviors are they related to? What strategies are used on mental additions, subtractions, multiplications and divisions and how are multiplication tables learned? What are the new trends in the teaching of mental calculation and estimation? An invaluable resource for all those involved in the practice and research of mathematics education, Mental Computation and Estimation will also be a useful tool for researchers, policy makers and developers of educational programs.
Results from national and international assessments indicate that school children in the United States are not learning mathematics well enough. Many students cannot correctly apply computational algorithms to solve problems. Their understanding and use of decimals and fractions are especially weak. Indeed, helping all children succeed in mathematics is an imperative national goal. However, for our youth to succeed, we need to change how we're teaching this discipline. Helping Children Learn Mathematics provides comprehensive and reliable information that will guide efforts to improve school mathematics from pre-kindergarten through eighth grade. The authors explain the five strands of mathematical proficiency and discuss the major changes that need to be made in mathematics instruction, instructional materials, assessments, teacher education, and the broader educational system and answers some of the frequently asked questions when it comes to mathematics instruction. The book concludes by providing recommended actions for parents and caregivers, teachers, administrators, and policy makers, stressing the importance that everyone work together to ensure a mathematically literate society.
This volume focuses on two related questions that are central to both the psychology of mathematical thinking and learning and to the improvement of mathematics education: What is the nature of arithmetic expertise? How can instruction best promote it? Contributors from a variety of specialities, including cognitive, developmental, educational, and neurological psychology; mathematics education; and special education offer theoretical perspectives and much needed empirical evidence about these issues. As reported in this volume, both theory and research indicate that the nature of arithmetic expertise and how to best promote it are far more complex than conventional wisdom and many scholars, past and present, have suggested. The results of psychological, educational, and clinical studies using a wide range of arithmetic tasks and populations (including "normally" and atypically developing children, non-injured and brain-injured adults, and savants) all point to the same conclusion: The heart of arithmetic fluency, in general, and the flexible and creative use of strategies, in particular, is what is termed "adaptive expertise" (meaningful or conceptually based knowledge). The construction of adaptive expertise in mathematics is, for the first time, examined across various arithmetic topics and age groups. This book will be an invaluable resource for researchers and graduate students interested in mathematical cognition and learning (including mathematics educators, developmental and educational psychologists, and neuropsychologists), educators (including teachers, curriculum supervisors, and school administrators), and others interested in improving arithmetic instruction (including officials in national and local education departments, the media, and parents).
Sponsored by the National Council of Teachers of Mathematics and written by leading experts in the field of mathematics education, the Handbook is specifically designed to make important, vital scholarship accessible to mathematics education professors, graduate students, educational researchers, staff development directors, curriculum supervisors, and teachers. The Handbook provides a framework for understanding the evolution of the mathematics education research field against the backdrop of well-established conceptual, historical, theoretical, and methodological perspectives. It is an indispensable working tool for everyone interested in pursuing research in mathematics education as the references for each of the Handbook's twenty-nine chapters are complete resources for both current and past work in that particular area.
ALAN J. BISHOP Monash University, Clayton, Victoria, Australia RATIONALE Mathematics Education is becoming a well-documented field with many books, journals and international conferences focusing on a variety of aspects relating to theory, research and practice. That documentation also reflects the fact that the field has expanded enormously in the last twenty years. At the 8th International Congress on Mathematics Education (ICME) in Seville, Spain, for example, there were 26 specialist Working Groups and 26 special ist Topic Groups, as well as a host of other group activities. In 1950 the 'Commission Internationale pour I 'Etude et l' Amelioration de l'Enseignement des Mathematiques' (CIEAEM) was formed and twenty years ago another active group, the 'International Group for the Psychology of Mathematics Education' (PME), began at the third ICME at Karlsruhe in 1976. Since then several other specialist groups have been formed, and are also active through regular conferences and publications, as documented in Edward Jacobsen's Chapter 34 in this volume.
This single-volume reference is designed for readers and researchers investigating national and international aspects of mathematics education at the elementary, secondary, and post-secondary levels. It contains more than 400 entries, arranged alphabetically by headings of greatest pertinence to mathematics education. The scope is comprehensive, encompassing all major areas of mathematics education, including assessment, content and instructional procedures, curriculum, enrichment, international comparisons, and psychology of learning and instruction.
The third edition of Reys’ Helping Children Learn Mathematics is a practical resource for undergraduate students of primary school teaching. Rich in ideas, tools and stimulation for lessons during teaching rounds or in the classroom, this edition continues to provide a clear understanding of how to navigate the Australian Curriculum, with detailed coverage on how to effectively use Information and Communications Technology (ICT) in the classroom. This is a full colour printed textbook with an interactive ebook code included. Great self-study features include: auto-graded in-situ knowledge check questions, video of teachers demonstrating how different maths topics can be taught in the classroom and animated, branched chain scenarios are in the e-text.
For many students, learning mathematics in the middle grades represents a watershed activity. If they fall behind or fail at this point, they are unlikely to recover and to pursue a career in the sciences or other mathematics-dependent occupations. The authors reveal at least two of the reasons for this watershed experience. First, the content itself is much more complex than that at the primary grades, a complexity that is only now being fully appreciated. Second, conventional instruction often is based on faulty assumptions about the way in which the content is learned. The chapters present the latest understanding of the nature of the mathematics content in the middle grades and the processes by which it is learned.