Download Free Computational Analysis And Simulation Of Toxic Particle Deposition In The Human Respiratory System Book in PDF and EPUB Free Download. You can read online Computational Analysis And Simulation Of Toxic Particle Deposition In The Human Respiratory System and write the review.

Morphometry of the Human Lung considers the developments in understanding the quantitative anatomy of the lung, and in the correlation of anatomy with physiology. This book is composed of 11 chapters, and begins with an overview of a systematic approach to a quantitative morphologic analysis of the architecture of the human lung, followed by a presentation of general problems of methodology and the derivation of reliable dimensional models of this organ. The subsequent chapters describe the methods of preparation of tissues, methods of random sampling, and adaptation of methodologies from other fields of science. These topics are followed by discussions the mathematical formulations for the translation of the data into the desired geometric forms and a technique of counting. The final chapters look into the mode of distribution and geometric forms that should eventually facilitate mathematical and physical considerations regarding the function of the lungs. These chapters also consider the application of these quantitative methods to the study of pathologic specimens, providing a most timely renovation of morphologic pathology. This book will be of value to pulmonologists, physiologists, and researchers who are interested in lung morphometry.
Traditional research methodologies in the human respiratory system have always been challenging due to their invasive nature. Recent advances in medical imaging and computational fluid dynamics (CFD) have accelerated this research. This book compiles and details recent advances in the modelling of the respiratory system for researchers, engineers, scientists, and health practitioners. It breaks down the complexities of this field and provides both students and scientists with an introduction and starting point to the physiology of the respiratory system, fluid dynamics and advanced CFD modeling tools. In addition to a brief introduction to the physics of the respiratory system and an overview of computational methods, the book contains best-practice guidelines for establishing high-quality computational models and simulations. Inspiration for new simulations can be gained through innovative case studies as well as hands-on practice using pre-made computational code. Last but not least, students and researchers are presented the latest biomedical research activities, and the computational visualizations will enhance their understanding of physiological functions of the respiratory system.
Authored by two longtime researchers in tobacco science, The Chemical Components of Tobacco and Tobacco Smoke, Second Edition chronicles the progress made from late 2008 through 2011 by scientists in the field of tobacco science. The book examines the isolation and characterization of each component. It explores developments in pertinent analytical
The #1 guide to aerosol science and technology -now better than ever Since 1982, Aerosol Technology has been the text of choice among students and professionals who need to acquire a thorough working knowledge of modern aerosol theory and applications. Now revised to reflect the considerable advances that have been made over the past seventeen years across a broad spectrum of aerosol-related application areas - from occupational hygiene and biomedical technology to microelectronics and pollution control -this new edition includes: * A chapter on bioaerosols * New sections on resuspension, transport losses, respiratory deposition models, and fractal characterization of particles * Expanded coverage of atmospheric aerosols, including background aerosols and urban aerosols * A section on the impact of aerosols on global warming and ozone depletion. Aerosol Technology, Second Edition also features dozens of new, fully worked examples drawn from a wide range of industrial and research settings, plus new chapter-end practice problems to help readers master the material quickly.
The Mechanics of Inhaled Pharmaceutical Aerosols, An Introduction provides a unique and comprehensive treatment of the mechanics of inhaled pharmaceutical aerosols. The book covers a wide range of topics and many new perspectives are given by drawing on research from a variety of fields. Novel, in-depth expositions of the most common delivery devices are given, including nebulizers, dry powder inhalers and propellant metered dose inhalers. The behaviour of aerosols in the respiratory tract is explained in detail, with complete coverage of the fundamentals of current deposition models. The book begins by providing a comprehensive introduction to aspects of aerosol mechanics that are relevant to inhaled pharmaceutical aerosols. It then gives an exhaustive pedagogical description of the behaviour of evaporating and condensing droplets (both aqueous and propellant-based), an introductory chapter on lung geometry and inhalation patterns, and coverage of relevant aspects of fluid mechanics in the lung. Finally, the book provides invaluable, detailed coverage on the mechanics of common pharmaceutical aerosol delivery systems and deposition in the respiratory tract. Throughout the book are many detailed numerical examples that apply the salient concepts to typical inhaled pharmaceutical aerosols. This book will be of interest to scientists and engineers involved in the research and development of inhaled pharmaceutical aerosol products. Experienced practitioners will find many new perspectives that will greatly enhance their understanding of this complex and rapidly growing field. For those delivering therapeutic agents to the lung, this book is a must-have. Students and academics will find this book an invaluable tool and for newcomers it is a worthy guide to the diverse fields that must be understood to work in the area of inhaled pharmaceutical aerosols.
Millions of Americans use e-cigarettes. Despite their popularity, little is known about their health effects. Some suggest that e-cigarettes likely confer lower risk compared to combustible tobacco cigarettes, because they do not expose users to toxicants produced through combustion. Proponents of e-cigarette use also tout the potential benefits of e-cigarettes as devices that could help combustible tobacco cigarette smokers to quit and thereby reduce tobacco-related health risks. Others are concerned about the exposure to potentially toxic substances contained in e-cigarette emissions, especially in individuals who have never used tobacco products such as youth and young adults. Given their relatively recent introduction, there has been little time for a scientific body of evidence to develop on the health effects of e-cigarettes. Public Health Consequences of E-Cigarettes reviews and critically assesses the state of the emerging evidence about e-cigarettes and health. This report makes recommendations for the improvement of this research and highlights gaps that are a priority for future research.
This book presents WHO guidelines for the protection of public health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethylene, have indoor sources, are known in respect of their hazardousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmental exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. They provide a scientific basis for legally enforceable standards.