Download Free Compressed Hydrogen In Fuel Cell Vehicles Book in PDF and EPUB Free Download. You can read online Compressed Hydrogen In Fuel Cell Vehicles and write the review.

Hydrogen fuel cell vehicles (HFCVs) could alleviate the nation's dependence on oil and reduce U.S. emissions of carbon dioxide, the major greenhouse gas. Industry-and government-sponsored research programs have made very impressive technical progress over the past several years, and several companies are currently introducing pre-commercial vehicles and hydrogen fueling stations in limited markets. However, to achieve wide hydrogen vehicle penetration, further technological advances are required for commercial viability, and vehicle manufacturer and hydrogen supplier activities must be coordinated. In particular, costs must be reduced, new automotive manufacturing technologies commercialized, and adequate supplies of hydrogen produced and made available to motorists. These efforts will require considerable resources, especially federal and private sector funding. This book estimates the resources that will be needed to bring HFCVs to the point of competitive self-sustainability in the marketplace. It also estimates the impact on oil consumption and carbon dioxide emissions as HFCVs become a large fraction of the light-duty vehicle fleet.
Lately it has become a matter of conventional wisdom that hydrogen will solve many of our energy and environmental problems. Nearly everyone -- environmentalists, mainstream media commentators, industry analysts, General Motors, and even President Bush -- seems to expect emission-free hydrogen fuel cells to ride to the rescue in a matter of years, or at most a decade or two. Not so fast, says Joseph Romm. In The Hype about Hydrogen, he explains why hydrogen isn't the quick technological fix it's cracked up to be, and why cheering for fuel cells to sweep the market is not a viable strategy for combating climate change. Buildings and factories powered by fuel cells may indeed become common after 2010, Joseph Romm argues, but when it comes to transportation, the biggest source of greenhouse-gas emissions, hydrogen is unlikely to have a significant impact before 2050. The Hype about Hydrogen offers a hype-free explanation of hydrogen and fuel cell technologies, takes a hard look at the practical difficulties of transitioning to a hydrogen economy, and reveals why, given increasingly strong evidence of the gravity of climate change, neither government policy nor business investment should be based on the belief that hydrogen cars will have meaningful commercial success in the near or medium term. Romm, who helped run the federal government's program on hydrogen and fuel cells during the Clinton administration, provides a provocative primer on the politics, business, and technology of hydrogen and climate protection.
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.
This book highlights the challenges of using hydrogen as a fuel for sustainable transportation including introduction of various hydrogen storage technologies, storage requirement for fuel cell vehicles, compressed hydrogen storage system, and refueling analysis with thermal management. Furthermore, thermodynamics and kinetics involved during refuelling, heat transfer issues in storage tank and effect of severe operating conditions on structure of storage tank under SAEJ2601 refueling conditions are discussed in detail. Features: Covers design and analysis of on-board storage/tank for compressed hydrogen in fuel-cell vehicle applications. Discuss heat transfer issues and effect of severe operating conditions on structure of storage the tank. Includes the structural analysis of composite storage tank. Provides assessment on refueling process of compressed hydrogen storage system and novel refueling process. Deals with thermodynamic and kinetic involved during refueling as per SAEJ2601. This book aims at researchers, professionals, and graduate students in automotive engineering, energy and power, materials, and chemical engineering.
The announcement of a hydrogen fuel initiative in the President's 2003 State of the Union speech substantially increased interest in the potential for hydrogen to play a major role in the nation's long-term energy future. Prior to that event, DOE asked the National Research Council to examine key technical issues about the hydrogen economy to assist in the development of its hydrogen R&D program. Included in the assessment were the current state of technology; future cost estimates; CO2 emissions; distribution, storage, and end use considerations; and the DOE RD&D program. The report provides an assessment of hydrogen as a fuel in the nation's future energy economy and describes a number of important challenges that must be overcome if it is to make a major energy contribution. Topics covered include the hydrogen end-use technologies, transportation, hydrogen production technologies, and transition issues for hydrogen in vehicles.
Hydrogen and fuel cells are vital technologies to ensure a secure and CO2-free energy future. Their development will take decades of extensive public and private effort to achieve technology breakthroughs and commercial maturity. Government research programs are indispensable for catalyzing the development process. This report maps the IEA countries' current efforts to research, develop and deploy the interlocking elements that constitute a "hydrogen economy", including CO2 capture and storage when hydrogen is produced out of fossil fuels. It provides an overview of what is being done, and by whom, covering an extensive complexity of national government R & D programs. The survey highlights the potential for exploiting the benefits of the international cooperation. This book draws primarily upon information contributed by IEA governments. In virtually all the IEA countries, important R & D and policy efforts on hydrogen and fuel cells are in place and expanding. Some are fully-integrated, government-funded programs, some are a key element in an overall strategy spread among multiple public and private efforts. The large amount of information provided in this publication reflects the vast array of technologies and logistics required to build the "hydrogen economy."--Publisher description.
This ready reference is unique in collating in one scientifically precise and comprehensive handbook the widespread data on what is feasible and realistic in modern fuel cell technology. Edited by one of the leading scientists in this exciting area, the short, uniformly written chapters provide economic data for cost considerations and a full overview of demonstration data, covering such topics as fuel cells for transportation, fuel provision, codes and standards. The result is highly reliable facts and figures for engineers, researchers and decision makers working in the field of fuel cells.
Hydrogen storage is considered a key technology for stationary and portable power generation especially for transportation. This volume covers the novel technologies to efficiently store and distribute hydrogen and discusses the underlying basics as well as the advanced details in hydrogen storage technologies. The book has two major parts: Chemical and electrochemical hydrogen storage and Carbon-based materials for hydrogen storage. The following subjects are detailed in Part I: Multi stage compression system based on metal hydrides Metal-N-H systems and their physico-chemical properties Mg-based nano materials with enhanced sorption kinetics Gaseous and electrochemical hydrogen storage in the Ti-Z-Ni Electrochemical methods for hydrogenation/dehydrogenation of metal hydrides In Part II the following subjects are addressed: Activated carbon for hydrogen storage obtained from agro-industrial waste Hydrogen storage using carbonaceous materials Hydrogen storage performance of composite material consisting of single walled carbon nanotubes and metal oxide nanoparticles Hydrogen storage characteristics of graphene addition of hydrogen storage materials Discussion of the crucial features of hydrogen adsorption of nanotextured carbon-based materials
to the German Edition This book is based on published material, oral presentations and lecture courses, as well as the author's personal research in the specific field of space technology and in the general areas of energy storage and transfer, and cryogenics. The science and technology of liquid hydrogen-once essential prere quisites for the rapid development of space technology-are now also proving to be more and more important for the energy production of the future. Hydrogen as an energy carrier can generally mediate the existing disparity between nuclear energy and regenerative energy, both of which are indispensable for the future. Hydrogen, as a secondary energy carrier, can be produced from these primary energy sources with minimal environmental impact and without the detrimental, long-term pollution effects of current fossil fuel technology. Hydrogen, therefore, represents the ultimate in energy technology. The initial, large-scale application of hydrogen as a secondary energy was as a high-energy rocket propellant. The procedures for its large scale liquefaction, storage and employment were generally developed in the U.S. Currently in Europe similar activities are being conducted only in France. The effort in West Germany involves testing hydrogen-oxygen and hydrogen-fluorine rocket engines, studying also the physical and technical characteristics of slush hydrogen-mixture of the solid and liquid phase-and is concentrating currently on R&D applications of liquid hydrogen as an alternate fuel. Similar activities are also being conducted in Japan and Canada.
Ames Laboratory, Iowa, USA