Download Free Complex Investigation Of The World Ocean Ciwo 2023 Book in PDF and EPUB Free Download. You can read online Complex Investigation Of The World Ocean Ciwo 2023 and write the review.

The book presents the most relevant research of the participants of the VII International Conference of Young Scientists "Complex Investigation of the World Ocean" (CIWO-2023). This conference was held at Saint Petersburg State University in May 15-19, 2023 (Saint Petersburg, Russia). It covers a wide range of fundamental and applied marine and limnology studies combined in eight sections: Ocean Physics, Ocean Biology, Ocean Chemistry, Marine Geology, Marine Geophysics, Marine Ecology and Environmental Management, Physical and Biological interactions (interdisciplinary section), Oceanological Technology and Instrumentation. The aim of this book is to show the relevance of the marine research due to the crucial role of the World Ocean in determining climate change on Earth, huge resources (fish resources, oil, gas and ore deposits, etc.) and intensive development of infrastructure in coastal and offshore zones. All these topics were marked within the framework of realization of the United Nations Decade of Ocean Science for Sustainable Development (2021-2030). The studies presented in the book covers the wide spectrum of different the most important marine and limnology issues: thermohaline structure of water body and interactions between ocean and atmosphere, dynamic of the ocean, marine ice in polar regions, biodiversity of the marine ecosystems, adaptation of marine life to climate changes, geological and geophysical investigations in oil and gas regions, sedimentation, paleooceanology and biostratigraphy, hydrochemistry of estuary regions and carbon fluxes, microplastic pollution of the ocean, eutrophication and etc.
Metal oxides constitute one of the most amazing classes of materials with a wide range of properties. They exhibit a variety of phenomena, such as ferroelectricity, ferromagnetism and superconductivity. A new aspect of metal oxides -- colossal magnetoresistance exhibited by certain manganese oxides, in particular rare earth manganates of perovskite structure -- has received much attention in the last four years. Some of these oxides show 100% magnetoresistance and have much potential for technological applications. Previously this phenomenon was found only in layered and granular metallic materials. Studies of colossal magnetoresistance have led to the discovery of many other new phenomena and properties such as charge ordering and orbital ordering. In view of the importance of colossal magnetoresistance, charge ordering and related phenomena exhibited by oxides to the physics and chemistry of solid materials, it is necessary and timely to have a book dealing with these topics. This book begins with a review of the subject followed by contributions from a number of experts which cover the present status of the subject.
This book addresses the problems of Geocosmos and provides a snapshot of the current research in a broad area of Earth Sciences carried out in Russia and elsewhere. The themes covered include solar physics, physics of magnetosphere, ionosphere and atmosphere, solar-terrestrial coupling links, seismology, geoelectricity, paleomagnetism and rock magnetism, as well as cross-disciplinary studies. The proceedings are carefully edited, providing a panoramic outlook of a broad area of Earth Sciences. The readership includes colleague researchers, students and early career scientists. The proceedings will help the readers to look at their research fields from various points of view. Problems of Geocosmos conferences are held by Earth Physics Department, St. Petersburg University bi-annually since 1994. It is the largest forum of this kind in Russia/former Soviet Union attracting up to 200 researchers in Earth and magnetospheric physics.
A comprehensive review of interactions between the climates of different ocean basins and their key contributions to global climate variability and change. Providing essential theory and discussing outstanding examples as well as impacts on monsoons, it a useful resource for graduate students and researchers in the atmospheric and ocean sciences.
This book is the result of collaboration within the frames of the 5th International Conference "Trigger Effects in Geosystems" held in the Institute of Geosphere Dynamics of Russian Academy of Sciences, June 2019. This book aims to raise awareness about different triggering aspects in the geosphere and its effects.The conference provided a multidisciplinary platform with a focus on (i) the influence of natural and anthropogenic factors on the geosphere, geomechanical systems and anthropogenic objects found in a subcritical state and (ii) the influence of these factors on the system “atmosphere - ionosphere”. The problems considered in the book may be interesting for a wide audience including students, professionals, researches, and for the industry.
Zaccheus Gould (1589-1668) immigrated during or before 1639 from England to Weymouth, Massachusetts, and shortly moved to Lynn, Massachusetts. He later moved to Ipswich and then Topsfield, Massachusetts. Descendants and relatives lived in New England, New York, Ohio and elsewhere. Includes Gould ancestry and genealogical data in England to 1455 A.D.
This book introduces readers to fundamental information on phosphor and quantum dots. It comprehensively reviews the latest research advances in and applications of fluoride phosphors, oxide phosphors, nitridosilicate phosphors and various quantum dot materials. Phosphors and phosphor-based quantum dot materials have recently gained considerable scientific interest due to their wide range of applications in lighting, displays, medical and telecommunication technologies. This work will be of great interest to researchers and graduate students in materials sciences and chemistry who wish to learn more about the principles, synthesis and analysis of phosphors and quantum dot materials.
The features and mechanism of Colossal Magnetoresistance, or CMR, in manganese oxides as well as device physics are highlighted in this book, with a focus on tunneling MR for some artificial structures. Underlying new science, such as tunable electron-lattice interaction in a metal and roles of orbital degrees of freedom in producing an unconventional metallic feature, is also discussed. The book provides a systematic exploration of the CMR materials and an extensive investigation of the electronic phenomena of those compounds by various experimental means.
Emerging wide bandgap (WBG) semiconductors hold the potential to advance the global industry in the same way that, more than 50 years ago, the invention of the silicon (Si) chip enabled the modern computer era. SiC- and GaN-based devices are starting to become more commercially available. Smaller, faster, and more efficient than their counterpart Si-based components, these WBG devices also offer greater expected reliability in tougher operating conditions. Furthermore, in this frame, a new class of microelectronic-grade semiconducting materials that have an even larger bandgap than the previously established wide bandgap semiconductors, such as GaN and SiC, have been created, and are thus referred to as “ultra-wide bandgap” materials. These materials, which include AlGaN, AlN, diamond, Ga2O3, and BN, offer theoretically superior properties, including a higher critical breakdown field, higher temperature operation, and potentially higher radiation tolerance. These attributes, in turn, make it possible to use revolutionary new devices for extreme environments, such as high-efficiency power transistors, because of the improved Baliga figure of merit, ultra-high voltage pulsed power switches, high-efficiency UV-LEDs, and electronics. This Special Issue aims to collect high quality research papers, short communications, and review articles that focus on wide bandgap device design, fabrication, and advanced characterization. The Special Issue will also publish selected papers from the 43rd Workshop on Compound Semiconductor Devices and Integrated Circuits, held in France (WOCSDICE 2019), which brings together scientists and engineers working in the area of III–V, and other compound semiconductor devices and integrated circuits. In particular, the following topics are addressed: – GaN- and SiC-based devices for power and optoelectronic applications – Ga2O3 substrate development, and Ga2O3 thin film growth, doping, and devices – AlN-based emerging material and devices – BN epitaxial growth, characterization, and devices