Download Free Complex Convexity And Analytic Functionals Book in PDF and EPUB Free Download. You can read online Complex Convexity And Analytic Functionals and write the review.

This book puts the modern theory of complex linear convexity on a solid footing, and gives a thorough and up-to-date survey of its current status. Applications include the Fantappié transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations.
Puts theory of complex linear convexity on a solid footing, and gives a survey of its status. Applications include the Fantappie transformation of analytic functionals, integral representation formulas, polynomial interpolation, and solutions to linear partial differential equations.
Convexity Theory Appl Functional Analysis
This volume contains the proceedings of the Fifth International Conference on Complex Analysis and Dynamical Systems, held from May 22-27, 2011, in Akko (Acre), Israel. The papers cover a wide variety of topics in complex analysis and partial differential
In spite of being nearly 500 years old, the subject of complex analysis is still today a vital and active part of mathematics. There are important applications in physics, engineering, and other aspects of technology. This Handbook presents contributed chapters by prominent mathematicians, including the new generation of researchers. More than a compilation of recent results, this book offers students an essential stepping-stone to gain an entry into the research life of complex analysis. Classes and seminars play a role in this process. More, though, is needed for further study. This Handbook will play that role. This book is also a reference and a source of inspiration for more seasoned mathematicians—both specialists in complex analysis and others who want to acquaint themselves with current modes of thought. The chapters in this volume are authored by leading experts and gifted expositors. They are carefully crafted presentations of diverse aspects of the field, formulated for a broad and diverse audience. This volume is a touchstone for current ideas in the broadly construed subject area of complex analysis. It should enrich the literature and point in some new directions.
This book is dedicated to the memory of Mikael Passare, an outstanding Swedish mathematician who devoted his life to developing the theory of analytic functions in several complex variables and exploring geometric ideas first-hand. It includes several papers describing Mikael’s life as well as his contributions to mathematics, written by friends of Mikael’s who share his attitude and passion for science. A major section of the book presents original research articles that further develop Mikael’s ideas and which were written by his former students and co-authors. All these mathematicians work at the interface of analysis and geometry, and Mikael’s impact on their research cannot be underestimated. Most of the contributors were invited speakers at the conference organized at Stockholm University in his honor. This book is an attempt to express our gratitude towards this great mathematician, who left us full of energy and new creative mathematical ideas.
This comprehensive monograph details polynomially convex sets. It presents the general properties of polynomially convex sets with particular attention to the theory of the hulls of one-dimensional sets. Coverage examines in considerable detail questions of uniform approximation for the most part on compact sets but with some attention to questions of global approximation on noncompact sets. The book also discusses important applications and motivates the reader with numerous examples and counterexamples, which serve to illustrate the general theory and to delineate its boundaries.
Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book contains survey and expository articles by leading experts in their corresponding fields, and features fully-refereed, high-quality papers exploring new results and trends in spectral theory, mathematical physics, geometric function theory, and partial differential equations. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. Another shared research interest of the contributors of this volume lies in the area of applied harmonic analysis, where a new notion called chromatic derivatives has recently been introduced in communication engineering. The material for this volume is based on the 13th New Mexico Analysis Seminar held at the University of New Mexico, April 3-4, 2014 and on several special sections of the Western Spring Sectional Meeting at the University of New Mexico, April 4-6, 2014. During the event, participants honored the memory of Cora Sadosky—a great mathematician who recently passed away and who made significant contributions to the field of harmonic analysis. Cora was an exceptional mathematician and human being. She was a world expert in harmonic analysis and operator theory, publishing over fifty-five research papers and authoring a major textbook in the field. Participants of the conference include new and senior researchers, recent doctorates as well as leading experts in the area.
Convexity is an ancient idea going back to Archimedes. Used sporadically in the mathematical literature over the centuries, today it is a flourishing area of research and a mathematical subject in its own right. Convexity is used in optimization theory, functional analysis, complex analysis, and other parts of mathematics.Convex Analysis introduces
The Mumford-Shah functional was introduced in the 1980s as a tool for automatic image segmentation, but its study gave rise to many interesting questions of analysis and geometric measure theory. The main object under scrutiny is a free boundary K where the minimizer may have jumps. The book presents an extensive description of the known regularity properties of the singular sets K, and the techniques to get them. It is largely self-contained, and should be accessible to graduate students in analysis. The core of the book is composed of regularity results that were proved in the last ten years and which are presented in a more detailed and unified way.