Download Free Complex Analysis And Dynamics In One Variable With Applications Book in PDF and EPUB Free Download. You can read online Complex Analysis And Dynamics In One Variable With Applications and write the review.

The study of complex variables is beautiful from a purely mathematical point of view, and very useful for solving a wide array of problems arising in applications. This introduction to complex variables, suitable as a text for a one-semester course, has been written for undergraduate students in applied mathematics, science, and engineering. Based on the authors' extensive teaching experience, it covers topics of keen interest to these students, including ordinary differential equations, as well as Fourier and Laplace transform methods for solving partial differential equations arising in physical applications. Many worked examples, applications, and exercises are included. With this foundation, students can progress beyond the standard course and explore a range of additional topics, including generalized Cauchy theorem, Painlevé equations, computational methods, and conformal mapping with circular arcs. Advanced topics are labeled with an asterisk and can be included in the syllabus or form the basis for challenging student projects.
The basics of what every scientist and engineer should know, from complex numbers, limits in the complex plane, and complex functions to Cauchy's theory, power series, and applications of residues. 1974 edition.
Complex Variables is an extended course in complex analysis and its applications for engineering students and for those who use complex analysis in their work. In addition to classical results, it includes results recently obtained by the authors. Antimirov, Kolyshkin, and Vaillancourt have combined a rigorous presentation with clarity and many solved examples. The text introduces the theory of functions of one complex variable, and presents an evaluation of many new integration formulae and the summation of new infinite series by the calculus of residue. The book also includes the Fatou-Julia theory for meromorphic functions for finding selective roots of some transcendental equations as found in the applications. The exercises provided in the text are elementary and aim at the understanding of the theory of analytic functions. Answers to odd-numbered exercises are in the back of the book; answers to even-numbered exercises are provided in an accompanying instructor's manual. Key Features: * Uses direct mathematical language, avoiding unnecessary abstract style * Contains planes of domain and image of mappings which are always clearly specified and well-illustrated with figures * Provides several new integration and summation formulas, which may eventually find their way into symbolic softwares * Includes a large collection of exercises * Expands entire functions in infinite products into simpler forms than those found in many textbooks * Presents fresh information on the dynamics of meromorphic functions to solve transcendental equation found in the applications
This textbook presents the application of mathematical methods and theorems tosolve engineering problems, rather than focusing on mathematical proofs. Applications of Vector Analysis and Complex Variables in Engineering explains the mathematical principles in a manner suitable for engineering students, who generally think quite differently than students of mathematics. The objective is to emphasize mathematical methods and applications, rather than emphasizing general theorems and principles, for which the reader is referred to the literature. Vector analysis plays an important role in engineering, and is presented in terms of indicial notation, making use of the Einstein summation convention. This text differs from most texts in that symbolic vector notation is completely avoided, as suggested in the textbooks on tensor algebra and analysis written in German by Duschek and Hochreiner, in the 1960s. The defining properties of vector fields, the divergence and curl, are introduced in terms of fluid mechanics. The integral theorems of Gauss (the divergence theorem), Stokes, and Green are introduced also in the context of fluid mechanics. The final application of vector analysis consists of the introduction of non-Cartesian coordinate systems with straight axes, the formal definition of vectors and tensors. The stress and strain tensors are defined as an application. Partial differential equations of the first and second order are discussed. Two-dimensional linear partial differential equations of the second order are covered, emphasizing the three types of equation: hyperbolic, parabolic, and elliptic. The hyperbolic partial differential equations have two real characteristic directions, and writing the equations along these directions simplifies the solution process. The parabolic partial differential equations have two coinciding characteristics; this gives useful information regarding the character of the equation, but does not help in solving problems. The elliptic partial differential equations do not have real characteristics. In contrast to most texts, rather than abandoning the idea of using characteristics, here the complex characteristics are determined, and the differential equations are written along these characteristics. This leads to a generalized complex variable system, introduced by Wirtinger. The vector field is written in terms of a complex velocity, and the divergence and the curl of the vector field is written in complex form, reducing both equations to a single one. Complex variable methods are applied to elliptical problems in fluid mechanics, and linear elasticity. The techniques presented for solving parabolic problems are the Laplace transform and separation of variables, illustrated for problems of heat flow and soil mechanics. Hyperbolic problems of vibrating strings and bars, governed by the wave equation are solved by the method of characteristics as well as by Laplace transform. The method of characteristics for quasi-linear hyperbolic partial differential equations is illustrated for the case of a failing granular material, such as sand, underneath a strip footing. The Navier Stokes equations are derived and discussed in the final chapter as an illustration of a highly non-linear set of partial differential equations and the solutions are interpreted by illustrating the role of rotation (curl) in energy transfer of a fluid.
Introduction to Complex AnalysisBy Michael Taylor
This book focuses on developments in complex dynamical systems and geometric function theory over the past decade, showing strong links with other areas of mathematics and the natural sciences. Traditional methods and approaches surface in physics and in the life and engineering sciences with increasing frequency – the Schramm‐Loewner evolution, Laplacian growth, and quadratic differentials are just a few typical examples. This book provides a representative overview of these processes and collects open problems in the various areas, while at the same time showing where and how each particular topic evolves. This volume is dedicated to the memory of Alexander Vasiliev.
In addition to being mathematically elegant, complex variables provide a powerful tool for solving problems that are either very difficult or virtually impossible to solve in any other way. Part I of this text provides an introduction to the subject, including analytic functions, integration, series, and residue calculus and also includes transform methods, ODEs in the complex plane, numerical methods and more. Part II contains conformal mappings, asymptotic expansions, and the study of Riemann-Hilbert problems. The authors also provide an extensive array of applications, illustrative examples and homework exercises. This book is ideal for use in introductory undergraduate and graduate level courses in complex variables.
This volume studies the dynamics of iterated holomorphic mappings from a Riemann surface to itself, concentrating on the classical case of rational maps of the Riemann sphere. This subject is large and rapidly growing. These lectures are intended to introduce some key ideas in the field, and to form a basis for further study. The reader is assumed to be familiar with the rudiments of complex variable theory and of two-dimensional differential geometry, as well as some basic topics from topology. This third edition contains a number of minor additions and improvements: A historical survey has been added, the definition of Lattés map has been made more inclusive, and the écalle-Voronin theory of parabolic points is described. The résidu itératif is studied, and the material on two complex variables has been expanded. Recent results on effective computability have been added, and the references have been expanded and updated. Written in his usual brilliant style, the author makes difficult mathematics look easy. This book is a very accessible source for much of what has been accomplished in the field.
Explores the interrelations between real and complex numbers by adopting both generalization and specialization methods to move between them, while simultaneously examining their analytic and geometric characteristics Engaging exposition with discussions, remarks, questions, and exercises to motivate understanding and critical thinking skills Encludes numerous examples and applications relevant to science and engineering students
The new Second Edition of A First Course in Complex Analysis with Applications is a truly accessible introduction to the fundamental principles and applications of complex analysis. Designed for the undergraduate student with a calculus background but no prior experience with complex variables, this text discusses theory of the most relevant mathematical topics in a student-friendly manor. With Zill's clear and straightforward writing style, concepts are introduced through numerous examples and clear illustrations. Students are guided and supported through numerous proofs providing them with a higher level of mathematical insight and maturity. Each chapter contains a separate section on the applications of complex variables, providing students with the opportunity to develop a practical and clear understanding of complex analysis.