Download Free Complete Course Of Pure Mathematics Book in PDF and EPUB Free Download. You can read online Complete Course Of Pure Mathematics and write the review.

Outline Course of Pure Mathematics presents a unified treatment of the algebra, geometry, and calculus that are considered fundamental for the foundation of undergraduate mathematics. This book discusses several topics, including elementary treatments of the real number system, simple harmonic motion, Hooke's law, parabolic motion under gravity, sequences and series, polynomials, binomial theorem, and theory of probability. Organized into 23 chapters, this book begins with an overview of the fundamental concepts of differential and integral calculus, which are complementary processes for solving problems of the physical world. This text then explains the concept of the inverse of a function that is a natural complement of the function concept and introduces a convenient notation. Other chapters illustrate the concepts of continuity and discontinuity at the origin. This book discusses as well the significance of logarithm and exponential functions in scientific and technological contexts. This book is a valuable resource for undergraduates and advanced secondary school students.
Pure Mathematics is a new Students' Book and accompanying Teacher's Guide that offers full coverage of the East African A Level curriculum.
Includes a section on matrices and transformations, this book features worked examples and exercises to illustrate concepts at every stage of its development. It caters for the "Pure Mathematics" content of various courses in Further Mathematics and also for preparation for the Advanced Extension Award.
For students reading Mathematics, either as part of a general degree or as an ancilliary course for an Honours degree, the subject should be presented in as straightforward a manners as is consistent with a moderate standard of rigour. This course in algebra, co-ordinate geometry and calculus is designed to fulfil these requirements for students at Universities, Polytechnics and Colleges of Technology. The book contains 350 worked examples and 1550 practice examples selected mainly from university examination papers. The practice examples have been carefully graded and some hints are given with the answers so that the book may be used for private study as well as for class work.
This classic calculus text remains a must-read for all students of introductory mathematical analysis. Clear, rigorous explanations of the mathematics of analytical number theory and calculus cover single-variable calculus, sequences, number series, more. 1921 edition.
This textbook covers in one volume all topics required in the pure mathematics section of single subject A-Level Mathematics syllabuses in the UK, as well as a significant part of the work required by those studying for Further Mathematics and for A-Level
A Course of Pure Mathematics is a classic textbook in introductory mathematical analysis, written by G. H. Hardy. It is recommended for people studying calculus. For years, it remains one of the most popular books on pure mathematics. The book contains a large number of descriptive and study materials together with a number of difficult problems with regards to number theory analysis. The book is organized into the following chapters, with each chapter further divided. Real Variables Functions Of Real Variables Complex Numbers Limits Of Functions Of A Positive Integral Variable Limits Of Functions Of A Continuous Variable. Continuous And Discontinuous Functions Derivatives And Integrals Additional Theorems In The Differential And Integral Calculus The Convergence Of Infinite Series And Infinite Integrals The Logarithmic, Exponential And Circular Functions Of A Real Variable The General Theory Of The Logarithmic, Exponential And Circular Functions The book was intended to help reform mathematics teaching in the world, from the University of Cambridge and in schools preparing to study higher mathematics. It was aimed directly at "scholarship level" students - the top 10% to 20% by ability. Hardy himself did not originally find a passion for mathematics, only seeing it as a way to beat other students, which he did decisively, and gain scholarships.[1] However, his book excels in effectively explaining analytical number theory and calculus following the rigor of mathematics. Whilst his book changed the way the subject was taught at university, the content reflects the era in which the book was written. The whole book explores number theory and the author constructs real numbers theoretically. It adequately deals with single-variable calculus, sequences, number series, properties of cos, sin, log, etc. but does not refer to mathematical groups, multi-variable functions or vector calculus. Each section includes some demanding problems. Hardy combines the enthusiasm of the missionary with the rigor of the purist in his exposition of the fundamental ideas of the differential and integral calculus, of the properties of infinite series and of other topics involving the notion of limit. Hardy's presentation of mathematical analysis is as valid today as when first written: students will find that his economical and energetic style of presentation is one that modern authors rarely come close to.[2] Despite its limitations, it is considered a classic in its field. It is probably of most use to 1st year university students of pure mathematics.
Accessible to all students with a sound background in high school mathematics, A Concise Introduction to Pure Mathematics, Fourth Edition presents some of the most fundamental and beautiful ideas in pure mathematics. It covers not only standard material but also many interesting topics not usually encountered at this level, such as the theory of solving cubic equations; Euler’s formula for the numbers of corners, edges, and faces of a solid object and the five Platonic solids; the use of prime numbers to encode and decode secret information; the theory of how to compare the sizes of two infinite sets; and the rigorous theory of limits and continuous functions. New to the Fourth Edition Two new chapters that serve as an introduction to abstract algebra via the theory of groups, covering abstract reasoning as well as many examples and applications New material on inequalities, counting methods, the inclusion-exclusion principle, and Euler’s phi function Numerous new exercises, with solutions to the odd-numbered ones Through careful explanations and examples, this popular textbook illustrates the power and beauty of basic mathematical concepts in number theory, discrete mathematics, analysis, and abstract algebra. Written in a rigorous yet accessible style, it continues to provide a robust bridge between high school and higher-level mathematics, enabling students to study more advanced courses in abstract algebra and analysis.
This book provides a systematic introduction to functions of one complex variable. Its novel feature is the consistent use of special color representations – so-called phase portraits – which visualize functions as images on their domains. Reading Visual Complex Functions requires no prerequisites except some basic knowledge of real calculus and plane geometry. The text is self-contained and covers all the main topics usually treated in a first course on complex analysis. With separate chapters on various construction principles, conformal mappings and Riemann surfaces it goes somewhat beyond a standard programme and leads the reader to more advanced themes. In a second storyline, running parallel to the course outlined above, one learns how properties of complex functions are reflected in and can be read off from phase portraits. The book contains more than 200 of these pictorial representations which endow individual faces to analytic functions. Phase portraits enhance the intuitive understanding of concepts in complex analysis and are expected to be useful tools for anybody working with special functions – even experienced researchers may be inspired by the pictures to new and challenging questions. Visual Complex Functions may also serve as a companion to other texts or as a reference work for advanced readers who wish to know more about phase portraits.
This elementary presentation exposes readers to both the process of rigor and the rewards inherent in taking an axiomatic approach to the study of functions of a real variable. The aim is to challenge and improve mathematical intuition rather than to verify it. The philosophy of this book is to focus attention on questions which give analysis its inherent fascination. Each chapter begins with the discussion of some motivating examples and concludes with a series of questions.