Download Free Compact Stars Book in PDF and EPUB Free Download. You can read online Compact Stars and write the review.

A whole decades research collated, organised and synthesised into one single book! Following a 60-page review of the seminal treatises of Misner, Thorne, Wheeler and Weinberg on general relativity, Glendenning goes on to explore the internal structure of compact stars, white dwarfs, neutron stars, hybrids, strange quark stars, both the counterparts of neutron stars as well as of dwarfs. This is a self-contained treatment and will be of interest to graduate students in physics and astrophysics as well as others entering the field.
This introduction to compact star physics explains key concepts from general relativity, thermodynamics and nuclear physics.
This self-contained textbook brings together many different branches of physics--e.g. nuclear physics, solid state physics, particle physics, hydrodynamics, relativity--to analyze compact objects. The latest astronomical data is assessed. Over 250 exercises.
Space observations are currently providing a glimpse of various new states of matter possibly present in compact stars, with terrestrial laboratories producing compelling evidence in support. The aim of this book is to facilitate the exchange of ideas ? both established and emergent, both theoretical and experimental ? in the areas of the physics of neutrinos, dense hadronic matter and compact stars.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings? (ISTP? / ISI Proceedings)? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)? CC Proceedings ? Engineering & Physical Sciences
Modern comprehensive introduction and overview of the physics of White Dwarfs, Neutron Stars and Black Holes, including all relevant observations. Contains a basic introduction to General Relativity, including the modern 3+1 split of spacetime and of Einstein’s equations. The split is used for the first time to derive the structure equations for rapidly rotating neutron stars and Black Holes. Detailed discussions and derivations of current theoretical results. In particular also the most recent equations of state for neutron star matter are explained. Topics , such as colour superconductivity are discussed and used for modelling. A book for graduate students and researchers. Contains exercises and some solutions.
The purpose and motivation of these lectures can be summarized in the following two questions: • What is the ground state (and its properties) of dense matter? • What is the matter composition of a compact star? The two questions are, of course, strongly coupled to each other. Depending on your point of view, you can either consider the ?rst as the main question and the second as a consequence or application of the ?rst, or vice versa. If you are interested in fundamental questions in particle physics you may take the former point of view: you ask the question what happens to matter if you squeeze it more and more. This leads to fundamental questions because at some level of suf?cient squeezing you expect to reach the point where the fundamental degrees of freedom and their interactions become important. That is, at some point you will reach a form of matter where not molecules or atoms, but the constituents of an atom, namely neutrons, protons, and electrons, are the relevant degrees of freedom.
X-ray astronomy is the prime available window on astrophysical compact objects: black holes, neutron stars and white dwarfs. In this book, prominent experts provide a comprehensive overview of the observations and astrophysics of these objects. This is a valuable reference for graduate students and active researchers.
There are reasons to believe the 21st century will be the best ever for astrophysics: the James Webb Space Telescope will extend nearly twenty times the present observational limit of visible light; neutrino massiveness opens a new window for exploration on dark energy and dark matter physics and is expected to provide insights into the fate of the Universe; the Higgs boson may allow for an understanding of the weakness of gravity; gravitational waves produced at the birth of the Universe and by compact stellar objects (supermassive black holes, black hole/neutron star mergers, gamma-ray bursts, white dwarf inspirals) have unveiled a new area of astronomy. Against this background, compact stars, the theme of this volume, present unique astrophysical laboratories for probing the fabric of space-time and the building blocks of matter and their interactions at physical regimes not attainable in terrestrial laboratories.
IAU symposium 165 'Compact Stars in Binaries' was held from 15 through 19 August 1994, as part of the 22nd General Assembly of the IAU in The Hague. The symposium, supported by IAU Commissions 35,37,44 and 48, and co-sponsored by Commission 42, was attended by about 400 to 500 participants. This symposium received support from: - The International Astronomical Union; - The Royal Netherlands Academy of Sciences; - The Netherlands Ministery of Education and Science; - The Leids Kerkhoven Bosscha Fonds; - The Stichting Fysica. The field of compact stars in binaries is one of the most active areas of present-day astrophysics. An absolute highlight of the last few years was the 1993 Nobel Prize of physics, awarded to Taylor and Hulse for their discovery of the binary pulsar PSR 1913+ 16, and the measurement of the orbital decay of this system due to the emission of gravitational waves. The aim of the organizers of the symposium was to present an overview of the most significant observational discoveries of the past decade, in com bination with a review of the most important theoretical developments. We were very happy that most of the world's leading experts in observation and theory were present at the symposium to review the various aspects of the subject. The contents of their oral presentations are now published in the form of these proceedings, which we expect to become an important source of reference for the coming years.
2 Homogeneous superconducting state 210 3 Superconducting phases with broken space symmetries 213 4 Flavor asymmetric quark condensates 219 5 Concluding remarks 221 Acknowledgments 222 References 223 Neutral Dense Quark Matter 225 Mei Huang and Igor Shovkovy 1 Introduction 225 2 Local charge neutrality: homogeneous phase 226 3 Global charge neutrality: mixed phase 234 4 Conclusion 238 References 238 Possibility of color magnetic superconductivity 241 Toshitaka Tatsumi, Tomoyuki Maruyama, and Eiji Nakano 1 Introduction 241 2 What is ferromagnetism in quark matter? 243 3 Color magnetic superconductivity 248 4 Chiral symmetry and magnetism 253 5 Summary and Concluding remarks 258 Acknowledgments 260 References 260 Magnetic Fields of Compact Stars with Superconducting Quark Cores 263 David M. Sedrakian, David Blaschke, and Karen M. Shahabasyan 1 Introduction 263 2 Free Energy 265 3 Ginzburg-Landau equations 267 4 Vortex Structure 269 5 Solution of Ginzburg-Landau Equations 271 6 The Magnetic Field Components 273 7 Summary 275 Acknowledgments 275 References 275 Thermal Color-superconducting Fluctuations in Dense Quark Matter 277 D. N.