Download Free Compact Connected Lie Transformation Groups On Spheres With Low Cohomogeneity Book in PDF and EPUB Free Download. You can read online Compact Connected Lie Transformation Groups On Spheres With Low Cohomogeneity and write the review.

The cohomogeneity of a transformation group ([italic capitals]G, X) is, by definition, the dimension of its orbit space, [italic]c = dim [italic capitals]X, G. We are concerned with the classification of differentiable compact connected Lie transformation groups on (homology) spheres, with [italic]c [less than or equal to symbol] 2, and the main results are summarized in five theorems, A, B, C, D, and E in part I. This paper is part II of the project, and addresses theorems D and E. D examines the orthogonal model from theorem A and orbit structures, while theorem E addresses the existence of "exotic" [italic capital]G-spheres.
The cohomogeneity of a transformation group ([italic capitals]G, X) is, by definition, the dimension of its orbit space, [italic]c = dim [italic capitals]X, G. By enlarging this simple numerical invariant, but suitably restricted, one gradually increases the complexity of orbit structures of transformation groups. This is a natural program for classical space forms, which traditionally constitute the first canonical family of testing spaces, due to their unique combination of topological simplicity and abundance in varieties of compact differentiable transformation groups.
Introduction to Compact Transformation Groups
In this volume, a new function H 2/ab (K, G) of abelian Galois cohomology is introduced from the category of connected reductive groups G over a field K of characteristic 0 to the category of abelian groups. The abelian Galois cohomology and the abelianization map ab1: H1 (K, G) -- H 2/ab (K, G) are used to give a functorial, almost explicit description of the usual Galois cohomology set H1 (K, G) when K is a number field
We undertake a systematic study of cyclic phenomena for composition operators. Our work shows that composition operators exhibit strikingly diverse types of cyclic behavior, and it connects this behavior with classical problems involving complex polynomial approximation and analytic functional equations.