Download Free Commercial Plant Produced Recombinant Protein Products Book in PDF and EPUB Free Download. You can read online Commercial Plant Produced Recombinant Protein Products and write the review.

Attention has recently turned to using plants as hosts for the production of commercially important proteins. The twelve case studies in this volume present successful strategies for using plants to produce industrial and pharmaceutical proteins and vaccine antigens. They examine in detail projects that have commercial potential or products that have already been commercialized, illustrating the advantages that plants offer over bacterial, fungal or animal cell-culture hosts. There are many indications that plant protein production marks the beginning of a new paradigm for the commercial production of proteins that, over the next decade, will expand dramatically.
Altogether, the biochemical, technical and economic limitations on existing proka- otic and eukaryotic expression systems and the growing clinical demand for complex therapeutic proteins have created substantial interest in developing new expression systems for the production of therapeutic proteins. To that end, plants have emerged in the past decade as a suitable alternative to the current production systems, and today their potential for production of high quality, much safer and biologically active complex recombinant pharmaceutical proteins is largely documented. The chapters in this volume, contributed by leaders in the field, sum up the state-- the-art methods for using a variety of different plants as expression hosts for phar- ceutical proteins. Several production platforms are presented, ranging from seed- and leaf-based production in stable transgenic plant lines, to plant cell bioreactors, to viral or Agrobacterium-mediated transient expr ession systems. Currently, antibodies and their derived fragments represent the largest and most important group of biote- nological products in clinical trials. This explains why the potential of most prod- tion platforms is illustrated here principally for antibodies or antibody fragments with acknowledged potential for immunotherapy in humans. In addition, a comparison of different plant expression systems is presented using aprotinin, a commercial phar- ceutical protein, as a test system. Although multiple books and monographs have been recently published on mol- ular pharming, there is a noticeable dearth of bench step-by-step protocols that can be used quickly and easily by beginners entering this new field.
This exciting volume Plants as Factories for Protein Production, edited by Drs. Elizabeth E. Hood and John A. Howard, contains chapters by experts in the field of molecular farming. The information within addresses the leading plant systems for recombinant protein production, as well as the progress being made in leading product categories - human pharmaceuticals, animal health, and industrial enzymes. More importantly, the book includes chapters that address the hot topics of production, containment, regulatory, and legal aspects that are quickly coming to the forefront of the industry. This most timely text is appropriate for graduate students and post-doctoral fellows, as well as being a key text for faculty, pharmaceutical producers, and industrial enzyme users.
This volume provided methods and protocols on recombinant protein production in different plant systems, downstream processing, and strategies to optimize protein expression. Chapters guide readers through recombinant protein production in important plant systems, protein recovery and purification, different strategies to optimise productivity, cloning and fusion protein approaches, and the regulation and freedom to operate analysis of plant-produced proteins. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Recombinant Proteins in Plants: Methods and Protocols aims to be useful to newcomers and experienced researchers interested in expanding their expertise in the field of plant-based protein production. Chapters 6, 8 and 17 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book explores the journey of biotechnology, searching for new avenues and noting the impressive accomplishments to date. It has harmonious blend of facts, applications and new ideas. Fast-paced biotechnologies are broadly applied and are being continuously explored in areas like the environmental, industrial, agricultural and medical sciences. The sequencing of the human genome has opened new therapeutic opportunities and enriched the field of medical biotechnology while analysis of biomolecules using proteomics and microarray technologies along with the simultaneous discovery and development of new modes of detection are paving the way for ever-faster and more reliable diagnostic methods. Life-saving bio-pharmaceuticals are being churned out at an amazing rate, and the unraveling of biological processes has facilitated drug designing and discovery processes. Advances in regenerative medical technologies (stem cell therapy, tissue engineering, and gene therapy) look extremely promising, transcending the limitations of all existing fields and opening new dimensions for characterizing and combating diseases.
Recombinant Proteins from Plants is one of the most exciting and fastest developing areas in biology. The latest molecular techniques are being applied to the exploitation of plants as novel expression systems for the p- duction and overproduction of heterologous and native proteins. Transgenic plant technology is currently used in three broad areas: the expression of - combinant proteins to improve crop quality by increasing disease/pest res- tance or increasing tolerance to stress, optimizing plant productivity and yield by the genetic manipulation of metabolic pathways, and the large-scale co- effective production of recombinant proteins for use as specialist industrial or therapeutic biomolecules. The intention of Recombinant Proteins from Plants is to provide c- prehensive and detailed protocols covering all the latest molecular approaches. Because the production oftransgenic plants has become routine in many la- ratories, coverage is also given to some of the more "classical" approaches to the separation, analysis, and characterization of recombinant proteins. The book also includes areas of research that we believe will become increasingly important in the near future: efficient transformation of monocots with Agrobacterium optimizing the stability of recombinant proteins, and a section highlighting the immunotherapeutic potential of plant-expressed proteins.
A single volume collection that surveys the exciting field of plant-made pharmaceuticals and industrial proteins This comprehensive book communicates the recent advances and exciting potential for the expanding area of plant biotechnology and is divided into six sections. The first three sections look at the current status of the field, and advances in plant platforms and strategies for improving yields, downstream processing, and controlling post-translational modifications of plant-made recombinant proteins. Section four reviews high-value industrial and pharmacological proteins that are successfully being produced in established and emerging plant platforms. The fifth section looks at regulatory challenges facing the expansion of the field. The final section turns its focus toward small molecule therapeutics, drug screening, plant specialized metabolites, and plants as model organisms to study human disease processes. Molecular Pharming: Applications, Challenges and Emerging Areas offers in-depth coverage of molecular biology of plant expression systems and manipulation of glycosylation processes in plants; plant platforms, subcellular targeting, recovery, and downstream processing; plant-derived protein pharmaceuticals and case studies; regulatory issues; and emerging areas. It is a valuable resource for researchers that are in the field of plant molecular pharming, as well as for those conducting basic research in gene expression, protein quality control, and other subjects relevant to molecular and cellular biology. Broad ranging coverage of a key area of plant biotechnology Describes efforts to produce pharmaceutical and industrial proteins in plants Provides reviews of recent advances and technology breakthroughs Assesses realities of regulatory and cost hurdles Forward looking with coverage of small molecule technologies and the use of plants as models of human disease processes Providing wide-ranging and unique coverage, Molecular Pharming: Applications, Challenges and Emerging Areas will be of great interest to the plant science, plant biotechnology, protein science, and pharmacological communities.
Here, authors from academia and industry provide an exciting overview of current production technologies and the fascinating possibilities for future applications. Topics include chloroplast-derived antibodies, biopharmaceuticals and edible vaccines, production of antibodies in plants and plant cell suspension cultures, production of spider silk proteins in plants, and glycosylation of plant produced proteins. The whole is rounded off by chapters on the demands and expectations made on molecular farming by pharmaceutical corporations and the choice of crop species in improving recombinant protein levels. Of interest to biotechnologists, gene technologists, molecular biologists and protein biochemists in university as well as the biotechnological and pharmaceutical industries.
More then 20 years have passed now since the first recombinant protein producing microorganisms have been developed. In the meanwhile, numerous proteins have been produced in bacteria, yeasts and filamentous fungi, as weIl as higher eukaryotic cells, and even entire plants and animals. Many recombinant proteins are on the market today, and some of them reached substantial market volumes. On the first sight one would expect the technology - including the physiology of the host strains - to be optimised in detail after a 20 year's period of development. However, several constraints have limited the incentive for optimisation, especially in the pharmaceutical industry like the urge to proceed quickly or the requirement to define the production parameters for registration early in the development phase. The additional expenses for registration of a new production strain often prohibits a change to an optimised strain. A continuous optimisation of the entire production process is not feasible for the same reasons.
Molecular farming is a biotechnological approach that includes the genetic adjustment of agricultural products to create proteins and chemicals for profitable and pharmaceutical purposes. Plant molecular farming describes the manufacture of recombinant proteins and other biologically active product in plants. This approach depends on a genetic transformation of plants that can be accomplished by the methods of stable gene transfer, such as gene transfer to nuclei and chloroplasts, and unstable transfer methods like viral vectors. The requirement for recombinant proteins in terms of quality, quantity, and diversity is increasing exponentially This demand is traditionally met by recombinant protein construction technologies and the engineering of orthodox expression systems based on bacteria or mammalian cell cultures. However, majority of developing countries cannot afford the high costs of medicine derived from such existing methods. Hence, we need to produce not only the new drugs but also the cheaper versions of those already present in the market. Plant molecular farming is considered as a cost-effective technology that has grown and advanced tremendously over the past two decades. This book summarizes the advances and challenges of plant molecular farming for all those who are working on or have an interest in this rapidly emerging area of research.