Download Free Combustion And Nonlinear Phenomena Book in PDF and EPUB Free Download. You can read online Combustion And Nonlinear Phenomena and write the review.

Nonlinear Phenomena in Mathematical Sciences contains the proceedings of an International Conference on Nonlinear Phenomena in Mathematical Sciences, held at the University of Texas at Arlington, on June 16-20,1980. The papers explore trends in nonlinear phenomena in mathematical sciences, with emphasis on nonlinear functional analytic methods and their applications; nonlinear wave theory; and applications to medical and life sciences. In the area of nonlinear functional analytic methods and their applications, the following subjects are discussed: optimal control theory; periodic oscillations of nonlinear mechanical systems; Leray-Schauder degree theory; differential inequalities applied to parabolic and elliptic partial differential equations; bifurcation theory, stability theory in analytical mechanics; singular and ordinary boundary value problems, etc. The following topics in nonlinear wave theory are considered: nonlinear wave propagation in a randomly homogeneous media; periodic solutions of a semilinear wave equation; asymptotic behavior of solutions of strongly damped nonlinear wave equations; shock waves and dissipation theoretical methods for a nonlinear Schr?dinger equation; and nonlinear hyperbolic Volterra equations occurring in viscoelasticity. Applications to medical and life sciences include mathematical modeling in physiology, pharmacokinetics, and neuro-mathematics, along with epidemic modeling and parameter estimation techniques. This book will be helpful to students, practitioners, and researchers in the field of mathematics.
Lean burning of premixed gases is considered to be a promising combustion technology for future clean and highly efficient gas turbine combustors. Yet researchers face several challenges in dealing with premixed turbulent combustion, from its nonlinear multiscale nature and the impact of local phenomena to the multitude of competing models. Filling
Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.
This book summarizes the main advances in the mechanisms of combustion processes. It focuses on the analysis of kinetic mechanisms of gas combustion processes and experimental investigation into the interrelation of kinetics and gas dynamics in gas combustion. The book is complimentary to the one previously published, The Modes of Gaseous Combustion.
Drawn from early volumes of Aerospace America and its antecedents, this book rescues the insights, concerns, and dreams of dozens of space propulsion experts for the next generation of aerospace scientists and engineers. Written by well-known figures in space propulsion, this book provides readily accessible source material for design courses in astronautical engineering. Propulsion Techniques surveys the technologies of rocketry in the traditional categories of liquid, solid, hybrid, nuclear, and electric propulsion. Historical trends and cycles are displayed in each category as articles describe concepts and progress from the early visions of Goddard, Oberth, and Tsiolkovsky to proposed (and re-proposed) ideas for advanced space thrusters. In addition to descriptions of rocket engines of various types, associated technologies for propellants and space-electrical power systems are discussed.
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
An international conference. titled Nonlinear Phenomena in Chemical Dynamics was held in Bordeaux on September 7-11, 1981. The present volume contains the text of lectures and abstracts of posters presented during the meeting. This conference is part of a series of scientific multidisciplinary meetings in which chemistry is involved at various levels. Amongst the most recent ones let us mention Aachen 1979, Bielefeld 1979, New York 1979, Elmau 1981. In addition, this meeting is a direct extension of the first one that took place in Bordeaux in 1978 on the topic "Far from equilibrium: instabilities and structures," at the conclusions of which we could write (cf. Far fram Equilibrium, Springer Series in Synergetics, Vol. 3): "The three key words, far fram equilibriUm, instabilities and structuPes, best illustrate the new concepts which emerge from the description of the dynamics of various systems relevant to many different research areas. " The present proceedings show how much these remarks have remained true, even though substantial progress has been achieved during the three last years. To get a ,deeper experimental knowledge of open reacting systems, to model and simulate reaction-diffusion systems, to develop the mathematical theory of dynamical sys tems, these are the main direction~ in current investigations.
Interfacial phenomena are commonplace in physics, chemistry, biology, and in various disciplines bridging these fields. They occur whenever a continuum is present which can exist in at least two different chemical or physical "states," and there is some mechanism which generates or enforces a spatial separation between these states. The separation boundary is then called an interface. In the examples studied here, the separation boundary, and its internal structure, result from the balance between two opposing tendencies: a diffusive effect which attempts to mix and smooth the properties of the material, and a physical or chemical mechanism which works to drive it to one or the other pure state. This volume is unique in that the treatment of flames, as well as internal layer dynamics "including curvature effects," is more detailed and systematic than in publications.