Download Free Colloidal Science Of Flotation Book in PDF and EPUB Free Download. You can read online Colloidal Science Of Flotation and write the review.

Keeping pace with explosive developments in the field, Colloidal Science of Flotation reviews and updates the fundamentals of the bubble-particle collection phenomenon using a self-consistent approach that helps readers understand the hydrodynamic aspects of bubble-particle collection. The authors examine bubble rise velocity, water velocity around air bubbles, the thinning of intervening liquid films, the stability of particle-bubble aggregates, and macroscopic processes in froth. They also survey the applicability of emerging technologies in industrial flotation deinking, wastewater treatment, flotation of plastics, and improvements in minerals and coal flotation.
The characteristic feature of the flotation process is the interaction of gas bubbles with solid particles in a dispersion medium. This monograph reviews the state of the art from the point of view of colloid science, i.e. the heteroparticle interaction. A number of process engineering aspects and physically-based approaches to modelling the flotation process are also taken into account. Special emphasis is on: hydrodynamic interaction of bubble-particle flow; properties, stability and significance of thin liquid films formed as bubbles and particles collide; kinetics of three-phase contact mobility; balance of forces between adhering particles and gas bubbles under static and nonstatic conditions (stability of bubble-particle aggregates).Trends for new applications are discussed and concise descriptions given of new laboratory methods of use to workers in colloids and interfaces. All essential topics are described and derived mathematically in order to enable the reader to calculate the numerical values of interest to him.
K.J.Ives Professor of Public Health Engineering University College London Industrial application of the use of bubbles to float fine particles in water began before the beginning of this century, in the field of mineral processing. Such bubble flotation was applied very little outside mineral processing, until about 1960 when the dissolved air process, which has already had some success in the pulp and paper industry, was applied to water and wastewater treatment. The subsequent two decades saw not only a growth development for water and wastewater treatment, but also a growing cognisance of the similarities that existed with mineral processing flotation. Therefore the time seemed ripe in 1982 for a joint meeting between experts in these two major fields of flotation to put together the Scientific Basis of Flotation in the form of a NATO Advanced Study Institute. Attended by about 60 specialists, mainly post doctoral, from 17 countries, this Study Institute in residence for two weeks in Christ's College, Cambridge (UK) heard presentations from several international experts, principally the 8 co-authors of this book. The integration of the various scientific disciplines of physics, physical chemistry, colloid science, hydrodynamics and process engineering showed where the common basiS, and occasional important differences, of flotation could be applied to mineral processing, water and wastewater treatment, and indeed some other process industries (for example: pharmaceuticals, and food manufacture).
This book provides an introduction to colloid science, based on the application of the principles of physical chemistry. Early chapters assume only an elementary knowledge of physical chemistry and provide the basis for more thorough discussion in later chapters covering specific aspects of colloid science. The widespread occurrence of colloids is stressed and the more important industrial applications of colloid technology are outlined. The final chapter deals with the future of colloid science and indicates the directions in which further developments are likely to take place. The book is ideal for undergraduate courses and, supplemented by further reading, for postgraduates too. It will also be useful to industrial research workers who wish to become familiar with the basic ideas and their many important applications to industry.
Within this volume is a thorough coverage of the fundamental principles embracing modern theories of colloid chemistry applied to mineral processing. It is written in respect for Dr. J.A. Kitchener, distinguished Reader in the Science of Mineral Processing in the Royal School of Mines, Imperial College, University of London (recently retired). Dr. Kitchener's expertise in colloid chemistry has led to numerous fundamental insights and practical advances in flotation, selective flocculation, and the treatment of slimes. Colloid chemistry is inevitably involved in all aspects of mineral processing, ranging from how collectors selectively adsorb on to mineral surfaces in flotation, to the forces which control the stability of dispersions of submicron particles, as well as embracing the behaviour of hydrolyzed metal ions in solid-water slurries. The intelligent use of this information is essential in the effective design of separation processes and strategies by the mineral processor. Up to date bibliographies are included at the end of each of the 13 chapters making this volume a useful general resource for researchers, students and mineral processors.
This volume includes 58 contributions to the 11th International Conference on Surface and Colloid Science, a highly successful conference sponsored by the International Association of Colloid and Interface Scientists and held in Iguassu Falls, Brazil, in September 2003. Topics covered are the following: Biocolloids and Biological Applications, Charged Particles and Interfaces, Colloid Stability, Colloidal Dispersions, Environmental Colloidal Science, Interfaces and Adsorption, Nanostructures and Nanotechnology, Self-Assembly and Structured Fluids, Surfactants and Polymers, Technology and Applications, Colloids and Surfaces in Oil Production. Surface and colloid science has acquired great momentum during the past twenty years and this volume is a good display of new results and new directions in this important area.
Volume IV (2005) covers preparation, characterization of colloids, stability and interaction between pairs of particles, and in concentrated systems, their rheology and dynamics. This volume contains two chapters written, or co-authored by J. Lyklema and edited contributions by A.P.Philipse, H.P. van Leeuwen, M. Minor, A. Vrij, R.Tuinier and T. van Vliet. The volume is logically followed by Vol V, but is equally valuable as a stand alone reference. * Combined with part V, this volume completes the prestigious series Fundamentals of Interface and Colloid Science * Together with volume V this book provides a general physical chemical background to colloid science * Covers all aspects of particle colloids
Ever since the first volume appeared in 1969, this series has received good reviews in a variety of periodicals published in different corners of the world. It would seem that the work has fulfilled its purpose as outlined in the Preface to Volume 1. The rapidly increasing interest in surface and colloid science by people engaged in industrial research and development, and in environmental, ecological, medical, pharmaceutical, and other areas, justifies the continuation of such an effort. The Surface and Colloid Science series originated with John Wiley and Sons and has been continued with Plenum Press. This volume is the third with the present publisher, and is the best assurance of our mutual interest to proceed with this work. Some books in the series, as was the case with Volume 11, may appear under the editorship of other workers in the field. For reasons of continuity, a sequential numbering system will be maintained. This editor hopes to provide the scientific and technical community with high-quality contributions in surface and colloid science in the future. He invites specialists to submit definitive chapters on any topic within the broad area of our discipline for inclusion in this series.