Download Free Cold Climate Hvac 2018 Book in PDF and EPUB Free Download. You can read online Cold Climate Hvac 2018 and write the review.

This volume presents the proceedings of the 9th Cold Climate HVAC conference, which was held in Kiruna, Sweden in 2018. The conference highlighted key technologies and processes that allow scientists, designers, engineers, manufacturers and other decision makers in cold climate regions to achieve good indoor environmental quality (IEQ) with a minimum use of energy and other resources. The conference addressed various technical, economic and social aspects of buildings and HVAC systems in new and renovated buildings. This proceedings volume gathers peer-reviewed papers by a diverse and international range of authors and showcases perspectives and practices in cold climate building design from around the globe. The following major aspects, which include both fundamental and theoretical research as well as applications and case studies, are covered: (1) Energy and power efficiency and low-energy buildings; (2) Renovating buildings; (3) Efficient HVAC components; (4) Heat pumps and geothermal systems; (5) Municipal and city energy systems; (6) Construction management; (7) Buildings in operation; (8) Building simulation; (9) Reference data; (10) Transdisciplinary connections and social aspects; (11) Indoor environments and health; (12) Moisture safety and water damage; (13) Codes, regulations, standards and policies; and (14) Other aspects of buildings in cold climates.
This volume presents the proceedings of the 9th Cold Climate HVAC conference, which was held in Kiruna, Sweden in 2018. The conference highlighted key technologies and processes that allow scientists, designers, engineers, manufacturers and other decision makers in cold climate regions to achieve good indoor environmental quality (IEQ) with a minimum use of energy and other resources. The conference addressed various technical, economic and social aspects of buildings and HVAC systems in new and renovated buildings. This proceedings volume gathers peer-reviewed papers by a diverse and international range of authors and showcases perspectives and practices in cold climate building design from around the globe. The following major aspects, which include both fundamental and theoretical research as well as applications and case studies, are covered: (1) Energy and power efficiency and low-energy buildings; (2) Renovating buildings; (3) Efficient HVAC components; (4) Heat pumps and geothermal systems; (5) Municipal and city energy systems; (6) Construction management; (7) Buildings in operation; (8) Building simulation; (9) Reference data; (10) Transdisciplinary connections and social aspects; (11) Indoor environments and health; (12) Moisture safety and water damage; (13) Codes, regulations, standards and policies; and (14) Other aspects of buildings in cold climates.
HVAC systems, load shifting, indoor climate, and energy and ventilation performance analyses are the key topics when improving energy performance in new and renovated buildings. This development has been boosted by the recently established nearly zero energy building requirements that will soon be in use in all EU Member States, as well as similar long-term zero energy building targets in Japan, the US, and other countries. The research covered in this Special Issue provides evidence of how new technical solutions have worked, in practice, in new or renovated buildings, and also discusses problems and how solutions should be further developed. Another focus is on the more detailed calculation methods needed for the correct design and sizing of dedicated systems, and for accurate quantification of energy savings. Occupant behavior and building operation is also examined, in order to avoid common performance gaps between calculated and measured performance. These topics demonstrate the challenge of high performance buildings as, in the end, comfortable buildings with good indoor climate which are easy and cheap to operate and maintain are expected by end customers. Ventilation performance, heating and cooling, sizing, energy predictions and optimization, load shifting, and field studies are some of the key topics in this Special Issue, contributing to the future of high performance buildings with reliable operation.
This book brings together some of the finest academics in the field to address important questions around the way in which people experience their physical environments, including temperature, light, air-quality, acoustics and so forth. It is of importance not only to the comfort people feel indoors, but also the success of any building as an environment for its stated purpose. The way in which comfort is produced and perceived has a profound effect on the energy use of a building and its resilience to the increasing dangers posed by extreme weather events, and power outages caused by climate change. Research on thermal comfort is particularly important not only for the health and well-being of occupants but because energy used for temperature control is responsible for a large part of the total energy budget of the built environment. In recent years there has been an increasing focus on the vulnerabilities of the thermal comfort system; how and why are buildings failing to provide safe and agreeable thermal environments at an affordable price? Achieving comfort in buildings is a complex subject that involves physics, behaviour, physiology, energy conservation, climate change, and of course architecture and urban design. Bringing together the related disciplines in one volume lays strong, multi-disciplinary foundations for new research and design directions for resilient 21st century architecture. This book heralds workable solutions and emerging directions for key fields in building the resilience of households, organisations and populations in a heating world.
This book is a compilation of selected papers from the 5th International Conference on Building Energy and Environment (COBEE2022), held in Montreal, Canada, in July 2022. The work focuses on the most recent technologies and knowledge of building energy and the environment, including health, energy, urban microclimate, smart cities, safety, etc. The contents make valuable contributions to academic researchers, engineers in the industry, and regulators of buildings. As well, readers encounter new ideas for achieving healthy, comfortable, energy-efficient, resilient, and safe buildings.
Building engineering is a complex and constantly evolving branch. The needs of the XXI century society cause a constant change in construction industry due to the need to achieve sustainable and ecological buildings. This affects all levels and phases of this engineering. Given this circumstance, numerous researchers turn their efforts to find optimal solutions for building engineering. For this reason, in this book a holistic analysis of building engineering is carried out from the perspectives that have a greater weight for sustainability objectives. The book is divided into 6 sections: (i) Building materials, which deals with research related to the most innovative and sustainable building materials; (ii) Design and construction, which deals with existing methodologies and advances in design and construction in construction sector; (iii) Building repair and maintenance, which deals with building repair, maintenance and upkeep techniques; (iv) Energy efficiency, which analyses the latest research on the energy efficiency of buildings and their behaviour in the face of climate change; (v) Sustainability, which analyses the establishment of measures to achieve a more sustainable built environment; and (vi) construction management, which compiles the latest studies in the field of Project manager. The 38 chapters of the book together constitute an advance for the topic of building engineering. The aspects covered in the book are of great interest to various sectors, such as researchers, engineers, architects, legislators and interested parties.
The monitoring of indoor air pollutants in a spatio-temporal basis is challenging. A key element is the access to local (i.e., indoor residential, workplace, or public building) exposure measurements. Unfortunately, the high cost and complexity of most current air pollutant monitors result in a lack of detailed spatial and temporal resolution. As a result, individuals in vulnerable groups (children, pregnant, elderly, and sick people) have little insight into their personal exposure levels. This becomes significant in cases of hyper-local variations and short-term pollution events such as instant indoor activity (e.g., cooking, smoking, and dust resuspension). Advances in sensor miniaturization have encouraged the development of small, inexpensive devices capable of estimating pollutant concentrations. This new class of sensors presents new possibilities for indoor exposure monitoring. This Special Issue invites research in the areas of the triptych: indoor air pollution monitoring, indoor air modeling, and exposure to indoor air pollution. Topics of interest for the Special Issue include, but are not limited to, the following: low-cost sensors for indoor air monitoring; indoor particulate matter and volatile organic compounds; ozone-terpene chemistry; biological agents indoors; source apportionment; exposure assessment; health effects of indoor air pollutants; occupant perception; climate change impacts on indoor air quality.
This book gathers the latest advances, innovations, and applications in the field of energy, environmental and construction engineering, as presented by international researchers and engineers at the International Scientific Conference Energy, Environmental and Construction Engineering, held in St. Petersburg, Russia on November 19-20, 2019. It covers highly diverse topics, including BIM; bridges, roads and tunnels; building materials; energy efficient and green buildings; structural mechanics; fluid mechanics; measuring technologies; environmental management; power consumption management; renewable energy; smart cities; and waste management. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
This book focuses on biogas production by anaerobic digestion, which is the most popular bioenergy technology of today. Using anaerobic digestion for the production of biogas is a sustainable approach that simultaneously also allows the treatment of organic waste. The energy contained in the substrate is released in the form of biogas, which can be employed as a renewable fuel in diverse industrial sectors. Although biogas generation is considered an established process, it continues to evolve, e.g. by incorporating modifications and improvements to increase its efficiency and its downstream applications. The chapters of this book review the progress made related to feedstock, system configuration and operational conditions. It also addresses microbial pathways utilized, as well as storage, transportation and usage of biogas. This book is an up-to-date resource for scientists and students working on improving biogas production.
This book presents select proceedings of the International Conference on Recent Advances in Mechanical Engineering Research and Development (ICRAMERD 2020). The contents focus on latest research and current problems in various branches of mechanical engineering. Some of the topics discussed here include fracture and failure analysis, fuels and alternative fuels, combustion and IC engines, advanced manufacturing technologies, powder metallurgy and rapid prototyping, industrial engineering and automation, supply chain management, design of mechanical systems, vibrations and control engineering, automobile engineering, fluid mechanics and machines, heat transfer, composite materials, micro and nano-engineering for energy storage and conversion, and modeling and simulations. The wide range of topics presented in this book can make it useful for beginners, researchers as well as professionals in mechanical engineering.