Download Free Cohomology Of Drinfeld Modular Varieties Book in PDF and EPUB Free Download. You can read online Cohomology Of Drinfeld Modular Varieties and write the review.

Originally published in 1995, Cohomology of Drinfeld Modular Varieties aimed to provide an introduction, in two volumes, both to this subject and to the Langlands correspondence for function fields. These varieties are the analogues for function fields of the Shimura varieties over number fields. The Langlands correspondence is a conjectured link between automorphic forms and Galois representations over a global field. By analogy with the number-theoretic case, one expects to establish the conjecture for function fields by studying the cohomology of Drinfeld modular varieties, which has been done by Drinfeld himself for the rank two case. The present volume is devoted to the geometry of these varieties, and to the local harmonic analysis needed to compute their cohomology. Though the author considers only the simpler case of function rather than number fields, many important features of the number field case can be illustrated.
Cohomology of Drinfeld Modular Varieties aims to provide an introduction to both the subject of the title and the Langlands correspondence for function fields. These varieties are the analogs for function fields of Shimura varieties over number fields. This present volume is devoted to the geometry of these varieties and to the local harmonic analysis needed to compute their cohomology. To keep the presentation as accessible as possible, the author considers the simpler case of function rather than number fields; nevertheless, many important features can still be illustrated. It will be welcomed by workers in number theory and representation theory.
Cohomology of Drinfeld Modular Varieties aims to provide an introduction to both the subject of the title and the Langlands correspondence for function fields. These varieties are the analogs for function fields of Shimura varieties over number fields. This present volume is devoted to the geometry of these varieties and to the local harmonic analysis needed to compute their cohomology. To keep the presentation as accessible as possible, the author considers the simpler case of function rather than number fields; nevertheless, many important features can still be illustrated. It will be welcomed by workers in number theory and representation theory.
This textbook offers an introduction to the theory of Drinfeld modules, mathematical objects that are fundamental to modern number theory. After the first two chapters conveniently recalling prerequisites from abstract algebra and non-Archimedean analysis, Chapter 3 introduces Drinfeld modules and the key notions of isogenies and torsion points. Over the next four chapters, Drinfeld modules are studied in settings of various fields of arithmetic importance, culminating in the case of global fields. Throughout, numerous number-theoretic applications are discussed, and the analogies between classical and function field arithmetic are emphasized. Drinfeld Modules guides readers from the basics to research topics in function field arithmetic, assuming only familiarity with graduate-level abstract algebra as prerequisite. With exercises of varying difficulty included in each section, the book is designed to be used as the primary textbook for a graduate course on the topic, and may also provide a supplementary reference for courses in algebraic number theory, elliptic curves, and related fields. Furthermore, researchers in algebra and number theory will appreciate it as a self-contained reference on the topic.
In this article the author describes in detail a compactification of the moduli schemes representing Drinfeld modules of rank 2 endowed with some level structure. The boundary is a union of copies of moduli schemes for Drinfeld modules of rank 1, and its points are interpreted as Tate data. The author also studies infinitesimal deformations of Drinfeld modules with level structure.
The most basic algebraic varieties are the projective spaces, and rational varieties are their closest relatives. In many applications where algebraic varieties appear in mathematics and the sciences, we see rational ones emerging as the most interesting examples. The authors have given an elementary treatment of rationality questions using a mix of classical and modern methods. Arising from a summer school course taught by János Kollár, this book develops the modern theory of rational and nearly rational varieties at a level that will particularly suit graduate students. There are numerous examples and exercises, all of which are accompanied by fully worked out solutions, that will make this book ideal as the basis of a graduate course. It will act as a valuable reference for researchers whilst helping graduate students to reach the point where they can begin to tackle contemporary research problems.
In his 1974 seminal paper 'Elliptic modules', V G Drinfeld introduced objects into the arithmetic geometry of global function fields which are nowadays known as 'Drinfeld Modules'. They have many beautiful analogies with elliptic curves and abelian varieties. They study of their moduli spaces leads amongst others to explicit class field theory, Jacquet-Langlands theory, and a proof of the Shimura-Taniyama-Weil conjecture for global function fields.This book constitutes a carefully written instructional course of 12 lectures on these subjects, including many recent novel insights and examples. The instructional part is complemented by research papers centering around class field theory, modular forms and Heegner points in the theory of global function fields.The book will be indispensable for everyone who wants a clear view of Drinfeld's original work, and wants to be informed about the present state of research in the theory of arithmetic geometry over function fields.
Cohomology of Drinfeld Modular Varieties aims to provide an introduction to both the subject of the title and the Langlands correspondence for function fields. These varieties are the analogs for function fields of Shimura varieties over number fields. This present volume is devoted to the geometry of these varieties and to the local harmonic analysis needed to compute their cohomology. To keep the presentation as accessible as possible, the author considers the simpler case of function rather than number fields; nevertheless, many important features can still be illustrated. It will be welcomed by workers in number theory and representation theory.