Download Free Coding And Modulation Techniques For Hybrid Spread Spectrum Communications Systems In The Presence Of Fading Partial Band Noise Multiple Access Interference And Awgn Book in PDF and EPUB Free Download. You can read online Coding And Modulation Techniques For Hybrid Spread Spectrum Communications Systems In The Presence Of Fading Partial Band Noise Multiple Access Interference And Awgn and write the review.

This lecture covers the fundamentals of spread spectrum modulation, which can be defined as any modulation technique that requires a transmission bandwidth much greater than the modulating signal bandwidth, independently of the bandwidth of the modulating signal. After reviewing basic digital modulation techniques, the principal forms of spread spectrum modulation are described. One of the most important components of a spread spectrum system is the spreading code, and several types and their characteristics are described. The most essential operation required at the receiver in a spread spectrum system is the code synchronization, which is usually broken down into the operations of acquisition and tracking. Means for performing these operations are discussed next. Finally, the performance of spread spectrum systems is of fundamental interest and the effect of jamming is considered, both without and with the use of forward error correction coding. The presentation ends with consideration of spread spectrum systems in the presence of other users. For more complete treatments of spread spectrum, the reader is referred to [1, 2, 3].
Coded Modulation Systems is an introduction to the subject of coded modulation in digital communication. It is designed for classroom use and for anyone wanting to learn the ideas behind this modern kind of coding. Coded modulation is signal encoding that takes into account the nature of the channel over which it is used. Traditional error correcting codes work with bits and add redundant bits in order to correct transmission errors. In coded modulation, continuous time signals and their phases and amplitudes play the major role. The coding can be seen as a patterning of these quantities. The object is still to correct errors, but more fundamentally, it is to conserve signal energy and bandwidth at a given error performance. The book divides coded modulation into three major parts. Trellis coded modulation (TCM) schemes encode the points of QAM constellations; lattice coding and set-partition techniques play major roles here. Continuous-phase modulation (CPM) codes encode the signal phase, and create constant envelope RF signals. The partial-response signaling (PRS) field includes intersymbol interference problems, signals generated by real convolution, and signals created by lowpass filtering. In addition to these topics, the book covers coding techniques of several kinds for fading channels, spread spectrum and repeat-request systems. The history of the subject is fully traced back to the formative work of Shannon in 1949. Full explanation of the basics and complete homework problems make the book ideal for self-study or classroom use.
Theses on any subject submitted by the academic libraries in the UK and Ireland.
The high level of technical detail included in standards specifications can make it difficult to find the correlation between the standard specifications and the theoretical results. This book aims to cover both of these elements to give accessible information and support to readers. It explains the current and future trends on communication theory and shows how these developments are implemented in contemporary wireless communication standards. Examining modulation, coding and multiple access techniques, the book is divided into two major sections to cover these functions. The two-stage approach first treats the basics of modulation and coding theory before highlighting how these concepts are defined and implemented in modern wireless communication systems. Part 1 is devoted to the presentation of main L1 procedures and methods including modulation, coding, channel equalization and multiple access techniques. In Part 2, the uses of these procedures and methods in the wide range of wireless communication standards including WLAN, WiMax, WCDMA, HSPA, LTE and cdma2000 are considered. An essential study of the implementation of modulation and coding techniques in modern standards of wireless communication Bridges the gap between the modulation coding theory and the wireless communications standards material Divided into two parts to systematically tackle the topic - the first part develops techniques which are then applied and tailored to real world systems in the second part Covers special aspects of coding theory and how these can be effectively applied to improve the performance of wireless communications systems
Coded-Modulation Techniques for Fading Channels provides the reader with a sound background for the application of bandwidth-efficient coded-modulation techniques in fading channels. The book systematically presents recent developments in the field, which has grown rapidly in recent years, and provides a solid frame of reference for further research in this area. During the past decade there has been a proliferation of research in the area of bandwidth-efficient coded-modulation techniques. The primary advantage of these schemes over modulation schemes employing traditional error correcting codes is their ability to improve the performance of the communication system without bandwidth expansion. This property makes them a suitable choice for channels which are limited in both power and bandwidth. A typical example of such channels is a mobile satellite channel, where it is desired to accommodate a large number of users in a given bandwidth with a power which is constrained by the physical size of the satellite and by the vehicle's antenna. Coded-Modulation Techniques for Fading Channels is an excellent reference for researchers and practicing engineers, and may be used as a text for advanced courses on the subject.
The performance of codes on frequency-hopped spread-spectrum channels with partial-band interference is investigated. The asymptotic performance of codes is measured by the channel capacity and the random coding exponent. The performance of specific codes is measured by the bit error probability. The channel models we consider are quite general and include channels with unknown parameters, channels which change with time, and channels with memory. These models are applicable to frequency-hopped spread-spectrum communication systems as well as to several other communication systems. We formulate the problem of communicating over channels with unknown transition probabilities (i.e. communicating over channels with jamming) as a game theory problem with payoff function being the mutual information between the channel input and the channel output. Under certain restrictions it is shown that memoryless coding and jamming strategies are simultaneously optimal strategies. Next we develop simple, yet accurate, models for many channels with memory that arise in practice. The channel statistics are constant for blocks of symbols of fixed length. The receiver is said to have side information if it can determine the channel statistics for each block of symbols transmitted.