Download Free Code Division Multiple Access Communications Book in PDF and EPUB Free Download. You can read online Code Division Multiple Access Communications and write the review.

Code division multiple access (CDMA) has proven to be a viable enabling technique for the simultaneous transmission and reception of data over a shared channel. Although associated mostly with wireless cellular communication, CDMA is also being considered for optical channels. This text, aimed at the reader with a basic background in electrical or optical engineering, covers CDMA fundamentals: from the basics of the communication process and digital data transmission, to the concepts of code division multiplexing, direct sequence spreading, diversity techniques, the near-far effect, and the IS-95 CDMA standard form.
A comprehensive introduction to CDMA theory and application Code division multiple access (CDMA) communication is rapidly replacing time- and frequency-division methods as the cornerstone of wireless communication and mobile radio. Theory of Code Division Multiple Access Communication provides a lucid introduction and overview of CDMA concepts and methods for both the professional and the advanced student. Emphasizing the role CDMA has played in the development of wireless communication and cellular mobile radio systems, the author leads you through the basic concepts of mobile radio systems and considers the different principles of multiple access-time division, frequency division, and code division. He then analyzes three major CDMA systems-direct sequence (DS) CDMA systems, frequency hopped (FH) CDMA systems, and pulse position hopped (PPH) CDMA systems. Other topics covered include: * Spread spectrum (SS) technology * Forward error control coding * CDMA communication on fading channels * Pseudorandom signals * Information theory in relation to CDMA communication * CDMA cellular networks Complete with useful appendices providing analyses of the moments of CDMA system decision statistics, Theory of Code Division Multiple Access Communication is a ready reference for every engineer seeking an understanding of the history and concepts of this key communications technology.
This book covers the basic aspects of Code Division Multiple Access or CDMA. It begins with an introduction to the basic ideas behind fixed and random access systems in order to demonstrate the difference between CDMA and the more widely understood TDMA, FDMA or CSMA. Secondly, a review of basic spread spectrum techniques are presented which are used in CDMA systems including direct sequence, frequency-hopping and time-hopping approaches. The basic concept of CDMA is presented, followed by the four basic principles of CDMA systems that impact their performance: interference averaging, universal frequency reuse, soft handoff, and statistical multiplexing. The focus of the discussion will then shift to applications. The most common application of CDMA currently is cellular systems. A detailed discussion on cellular voice systems based on CDMA, specifically IS-95, is presented. The capacity of such systems will be examined as well as performance enhancement techniques such as coding and spatial filtering. Also discussed are Third Generation CDMA cellular systems and how they differ from Second Generation systems. A second application of CDMA that is covered is spread spectrum packet radio networks. Finally, there is an examination of multi-user detection and interference cancellation and how such techniques impact CDMA networks. This book should be of interest and value to engineers, advanced students, and researchers in communications.
Optical code division multiple access (OCDMA) communication network technology will play an important role in future optical networks, such as optical access and metropolitan area networks. OCDMA technology can also be applied to implement optical signal multiplexing and label switching on backbone networks. Optical Code Division Multiple Access Communication Networks - Theory and Applications introduces the code theory of OCDMA, the methods and technologies of OCDMA encoding and decoding, the theory and methods of analyzing OCDMA systems with various receiver models and realizing multiple-class services with different bit rates and QoS. In addition, OCDMA network architectures, protocols and applications are discussed in detail. The up-to-date theoretical and experimental results on OCDMA systems and networks are also reported. A large number of encoding/decoding examples and many analysis and simulation results of code and system performances are given. It is a valuable text and/or reference book for postgraduates majoring in telecommunication and photonics to obtain a well-knit theoretical foundation and for engineers in R&D and management of optical communications. Dr. Yin is an Associate Professor of the School of Electronics Engineering and Computer Science at Peking University, China, and was a Visiting Research Fellow of Optoelectronics Research Centre (ORC) at University of Southampton, UK. Dr. Richardson is a Professor for optical communications and Deputy Director of ORC at University of Southampton, UK, and is responsible for much of the ORC's fiber related activities.
Mobile and wireless communications applications have a clear impact on improving the humanity wellbeing. From cell phones to wireless internet to home and office devices, most of the applications are converted from wired into wireless communication. Smart and advanced wireless communication environments represent the future technology and evolutionary development step in homes, hospitals, industrial, vehicular and transportation systems. A very appealing research area in these environments has been the wireless ad hoc, sensor and mesh networks. These networks rely on ultra low powered processing nodes that sense surrounding environment temperature, pressure, humidity, motion or chemical hazards, etc. Moreover, the radio frequency (RF) transceiver nodes of such networks require the design of transmitter and receiver equipped with high performance building blocks including antennas, power and low noise amplifiers, mixers and voltage controlled oscillators. Nowadays, the researchers are facing several challenges to design such building blocks while complying with ultra low power consumption, small area and high performance constraints. CMOS technology represents an excellent candidate to facilitate the integration of the whole transceiver on a single chip. However, several challenges have to be tackled while designing and using nanoscale CMOS technologies and require innovative idea from researchers and circuits designers. While major researchers and applications have been focusing on RF wireless communication, optical wireless communication based system has started to draw some attention from researchers for a terrestrial system as well as for aerial and satellite terminals. This renewed interested in optical wireless communications is driven by several advantages such as no licensing requirements policy, no RF radiation hazards, and no need to dig up roads besides its large bandwidth and low power consumption. This second part of the book, Mobile and Wireless Communications: Key Technologies and Future Applications, covers the recent development in ad hoc and sensor networks, the implementation of state of the art of wireless transceivers building blocks and recent development on optical wireless communication systems. We hope that this book will be useful for students, researchers and practitioners in their research studies.
Spread spectrum multiple access communication, known commercially as CDMA (Code Division Multiple Access), is a driving technology behind the rapidly advancing personal communications industry. Its greater bandwidth efficiency and multiple access capabilities make it the leading technology for relieving spectrum congestion caused by the explosion in popularity of cellular mobile and fixed wireless telephones and wireless data terminals. Written by a leader in the creation of CDMA and an internationally recognized authority on wireless digital communication, this book gives you the technical information you need. It presents the fundamentals of digital communications and covers all aspects of commercial direct-sequence spread spectrum technology, incorporating both physical-level principles and network concepts. You will find detailed information on signal generation, synchronization, modulation, and coding of direct-sequence spread spectrum signals. In addition, the book shows how these physical layer functions relate to link and network properties involving cellular coverage, Erlang capacity, and network control. With this book, you will attain a deeper understanding of personal communications system concepts and will be better equipped to develop systems and products at the forefront of the personal wireless communications market.
Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.
This book presents comprehensive coverage of current and emerging multiple access, random access, and waveform design techniques for 5G wireless networks and beyond. A definitive reference for researchers in these fields, the book describes recent research from academia, industry, and standardization bodies. The book is an all-encompassing treatment of these areas addressing orthogonal multiple access and waveform design, non-orthogonal multiple access (NOMA) via power, code, and other domains, and orthogonal, non-orthogonal, and grant-free random access. The book builds its foundations on state of the art research papers, measurements, and experimental results from a variety of sources.
Code Division Multiple Access (CDMA) is a hot topic. Until now, it has only been used in satellite and military systems, but engineers are starting to recognize certain advantages it has over FDMA and TDMA for use in cellular radio.
Code-division multiple access (CDMA) technology has been widely adopted in cell phones. Its astonishing success has led many to evaluate the promise of this technology for optical networks. This field has come to be known as Optical CDMA (OCDMA). Surveying the field from its infancy to the current state, Optical Code Division Multiple Access: Fundamentals and Applications offers the first comprehensive treatment of OCDMA from technology to systems. The book opens with a historical perspective, demonstrating the growth and development of the technologies that would eventually evolve into today's optical networks. Building on this background, the discussion moves to coherent and incoherent optical CDMA coding techniques and performance analysis of these codes in fiber optic transmission systems. Individual chapters provide detailed examinations of fiber Bragg grating (FBG) technology including theory, design, and applications; coherent OCDMA systems; and incoherent OCDMA systems. Turning to implementation, the book includes hybrid multiplexing techniques along with system examples and conversion techniques to connect networks that use different multiplexing platforms, state-of-the-art integration technologies, OCDMA network security issues, and OCDMA network architectures and applications, including a look at possible future directions. Featuring contributions from a team of international experts led by a pioneer in optical technology, Optical Code Division Multiple Access: Fundamentals and Applications places the concepts, techniques, and technologies in clear focus for anyone working to build next-generation optical networks.