Download Free Coal Combustion Modelling Book in PDF and EPUB Free Download. You can read online Coal Combustion Modelling and write the review.

Harness State-of-the-Art Computational Modeling Tools Computational Modeling of Pulverized Coal Fired Boilers successfully establishes the use of computational modeling as an effective means to simulate and enhance boiler performance. This text factors in how computational flow models can provide a framework for developing a greater understanding of the underlying processes in PC boilers. It also provides a detailed account of the methodology of computational modeling of pulverized coal boilers, as well as an apt approach to modeling complex processes occurring in PC boilers in a manageable way. Connects Modeling with Real-Life Applications Restricted to the combustion side of the boiler (the authors assume some prior background of reaction engineering and numerical techniques), the book describes the individual aspects of combustion and heat recovery sections of PC boilers that can be used to further improve the design methodologies, optimize boiler performance, and solve practical boiler-related problems. The book provides guidelines on implementing the material in commercial CFD solvers, summarizes key points, and presents relevant case studies. It can also be used to model larger boilers based on conventional, super-critical, or ultra-super critical technologies as well as based on oxy-fuel technologies. Consisting of six chapters, this functional text: Provides a general introduction Explains the overall approach and methodology Explores kinetics of coal pyrolysis (devolatilization) and combustion and methods of its evaluation Presents computational flow modeling approach to simulate pulverized coal fired boiler Covers modeling aspects from formulation of model equations to simulation methodology Determines typical results obtained with computational flow models Discusses the phenomenological models or reactor network models Includes practical applications of computational modeling Computational Modeling of Pulverized Coal Fired Boilers explores the potential of computational models for better engineering of pulverized coal boilers, providing an ideal resource for practicing engineers working in utility industries. It also benefits boiler design companies, industrial consultants, R & D laboratories, and engineering scientists/research students.
Bridging the gap between theory and application, this reference demonstrates the operational mechanisms, modeling, and simulation of equipment for the combustion and gasification of solid fuels. Solid Fuels Combustion and Gasification: Modeling, Simulation, and Equipment Operation clearly illustrates procedures to improve and optimize the de
Introduction to Combustion is the leading combustion textbook for undergraduate and graduate students because of its easy-to-understand analyses of basic combustion concepts and its introduction of a wide variety of practical applications that motivate or relate to the various theoretical concepts. This is a text that is useful for junior/senior undergraduates or graduate students in mechanical engineering and practicing engineers. The third edition updates and adds topics related to protection of the environment, climate change, and energy use. Additionally, a new chapter is added on fuels due to the continued focus on conservation and energy independence.
This book gathers the proceedings of the 9th International Symposium on Coal Combustion, held in Qingdao, China in July 2019. It provides the latest research results on techniques for pulverized coal combustion and fluidized bed combustion, low-carbon energy and emission controls, and industrial applications. Highlighting research areas that are of great importance in promoting collaboration between related subjects and the technical development of coal-related fields, the book offers a valuable reference guide for researchers and engineers alike.
This work is a broad, integrated treatment of the fundamentals of coal combustion and gasification. Most of the authors are recognized professionals in the field and all are conducting research work in the Advanced Combustion Engineering Research Center. The focus of the book is on clean and efficient use of coal. Practical chapters on coal processes, including coal technology projects and on acid rain formation control, lay a foundation for the fundamental treatment. The book is comprehensive in its treatment with over 1000 world-wide references, most of which are from the past five years.
The study of coal for the production of energy is certainly not a new area of research. Many research works were carried out to improve the efficiency of industrial and domestic facilities. In the sixties, however, because of the availability and low cost of petroleum, coal consumption decreased and the research effort in this area was minimum. Meanwhile, the situation has totally changed. Considering the reserves of oil and the instability ofregions where they are located, it is becoming absolutely necessary to develop other sources of energy.The major alternative to oil appears to be coal, at least for the near future. Indeed, the reserves known today represent several centuries of energy consumption.!t is therefore becoming urgent to develop efficient and non polluting technologies to produce energy from coal. The main possibilities are : · liquefaction · gasification · directed combustion. Research and development efforts on liquefaction have been considerably reduced because of high cost of technologies involved and poor prospects for the next two decades. Research works on gasification are progressing; it is a promising approach. However, direct combustion either in pulverized coal furnaces or in fluidized beds is the more promising way of expanding rapidly the utilization of coal. These techniques are already used in some facilities but many environmental problems remain, slowing down their development.
Process Chemistry of Coal Utilization: Reaction Mechanisms for Coal Decomposition and Volatiles Conversion relates major advances in coal science on how to interpret performance data from lab, pilot and commercial scales. The book presents a very broad range of quantitative methods, from statistical regressions, to rudimentary models, CFD and comprehensive reaction mechanisms. Combining the latest research in the field, including an abundance of lab datasets, the book illustrates how a particular operating condition affects a specific coal-based reaction system. Managers who use these tactics will be able to tailor their testing and simulation work to effectively characterize and solve their problems. - Compiles fully validated reaction mechanisms that accurately depict the coal quality impacts in all major coal utilization technologies - Includes an abundance of lab datasets that clearly illustrate how operating conditions affect coal-based reaction systems
In order to reduce the cost of running blast furnaces (BFs), injected pulverized coal is used rather than coke to fire BFs. As a result of this, unburned fine materials are blown with the gas into the bosh and dead man areas with possible detrimental effects on gas flow and permeability of the coke column. The capacity of the furnace to consume these particles by solution loss is probably one of the limitations to coal injection. It is, therefore, important to understand the physicochemical and aerodynamic behaviour of fines including the change of in-furnace phenomena.The Committee of Pulverized Coal Combustion and In-Furnace Reaction in BF was set up in 1993 as a cooperative research of the Japan Society for the Promotion of Science (JSPS) and the Iron and Steel Institute (ISIJ) to evaluate research initiative into this problem.This book reports on the JSPS/ISIJ Committee's activities and describes the interpretation of findings drawn from combustion experiments and the results of live furnace applications, and furnace performance.
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.