Download Free Clinical Applications Of Magnetic Resonance Spectroscopy Book in PDF and EPUB Free Download. You can read online Clinical Applications Of Magnetic Resonance Spectroscopy and write the review.

Magnetic Resonance Spectroscopy: Tools for Neuroscience Research and Emerging Clinical Applications is the first comprehensive book for non-physicists that addresses the emerging and exciting technique of magnetic resonance spectroscopy. Divided into three sections, this book provides coverage of the key areas of concern for researchers. The first, on how MRS is acquired, provides a comprehensive overview of the techniques, analysis, and pitfalls encountered in MRS; the second, on what can be seen by MRS, provides essential background physiology and biochemistry on the major metabolites studied; the final sections, on why MRS is used, constitutes a detailed guide to the major clinical and scientific uses of MRS, the current state of teh art, and recent innovations. Magnetic Resonance Spectroscopy will become the essential guide for people new to the technique and give those more familiar with MRS a new perspective. - Chapters written by world-leading experts in the field - Fully illustrated - Covers both proton and non-proton MRS - Includes the background to novel MRS imaging approaches
Clinical Applications of MR Spectroscopy Edited by Suresh K. Mukherji, M.D. Magnetic resonance spectroscopy (MRS) is a powerful diagnostic tool for a variety of brain disorders—from epilepsy and tumors to age-related degeneration and strokes. Unlike magnetic resonance imaging (MRI), which gives us a picture of anatomical and physiological conditions, MRS generates a frequency domain spectrum that provides information about biochemical and metabolic processes occurring within tissues. Clinical Applications of MR Spectroscopy presents a short, practical treatment of MRS today. Comprising contributions by leading authorities in the field, the book discusses MRS techniques used for diagnostic purposes and research, terminologies and examples drawn from clinical experience, and ways to correlate MRS results with other modalities to enhance our understanding of disease processes and the outcomes of particular treatments. Topics include: Basic principles of clinical proton magnetic resonance spectroscopy MRS in the evaluation of epilepsy Proton MRS of brain tumors Proton MRS in selected childhood disorders MRS and spectroscopic imaging for cerebrovascular disease MRS of degenerative brain disease in the elderly MRS of the head and neck Potential clinical applications of new techniques in MRS Correlation of functional brain imaging with MRS Clinical Applications of MR Spectroscopy provides 150 photographs and figures to illustrate the interpretation of MRS signals, as well as fully referenced chapters for those wishing to expand their knowledge of the underlying science. It is an essential guide to the state of the art for radiologists and neurologists using this technology to improve patient care.
Covers all MR spectroscopy techniques and their clinical applications in neurological disorders, malignancies and musculoskeletal diseases.
Magnetic resonance spectroscopy (MRS) has been an important analytical tool in organic chemistry, biology, and materials science for more than a half-century. Now, recent advances in the clinical application of MRS are allowing radiologists to more effectively diagnose lymphoma, head and neck cancers, and brain tumors, as well as to understand metabolic brain anomalies such as stroke and dementia. Clinical MR Spectroscopy: First Principles acquaints readers with the basic physics and chemistry of MRS while providing clear, practical guidelines for its clinical use. While most readers are likely to have had experience with MRI, this is not a prerequisite for understanding either the basic science or applied sections of the book. Individual chapters address such topics as: * The basic concepts of MRS * Hardware and software requirements * Techniques for localized spectroscopy * Spectroscopy data processing * The application of MRS in examining the brain, heart, muscles, and liver. Clinical MR Spectroscopy: First Principles features numerous line drawings to clarify the basic science of MRS and images to illustrate its clinical utility. This concise and timely book provides an accessible but comprehensive resource for radiologists, MRI technologists, and radiology residents.
With an incredible 2400 illustrations, and written by a multitude of international experts, this book provides a comprehensive overview of both the physics and the clinical applications of MRI, including practical guidelines for imaging. The authors define the importance of MRI in the diagnosis of several disease groups in comparison or combination with other methods. Chapters dealing with basic principles of MRI, MR spectroscopy (MRS), interventional MRI and functional MRI (fMRI) illustrate the broad range of applications for MRI. Both standard and cutting-edge applications of MRI are included. Material on molecular imaging and nanotechnology give glimpses into the future of the field.
Magnetic resonance spectroscopy (MRS) is a modality available on most clinical MR scanners and readily integrated with standard MR imaging (MRI). For the brain in particular, MRS has been a powerful research tool providing additional clinically relevant information for several disease families such as brain tumors, metabolic disorders, and systemic diseases. The most widely-available MRS method, proton (1H; hydrogen) spectroscopy, is FDA approved for general use in the US and can be ordered by clinicians for patient studies if indicated. There are several books available that describe applications of MRS in adults. However, to the best of our knowledge there is currently no book available that focuses exclusively on applications in pediatrics. MR spectroscopy in the pediatric population is different from adults for two main reasons. Particularly in the newborn phase the brain undergoes biochemical maturation with dramatic changes of the "normal" biochemical fingerprint. Secondly, brain diseases in the pediatric population are different from adult disorders. For example, brain tumors, which are mostly gliomas in the adults, often originate from different cell types and are also more diverse even within the same type and grade of tumor. This diversity of diseases and its implications for MR spectroscopy has not been addressed sufficiently in the literature, we believe. The target audience for "MR Spectroscopy of Pediatric Brain Disorders" are thus both clinicians and researchers involved with pediatric brain disorders. This includes radiologists, neurologists, neurooncologists, neurosurgeons, and more broadly the neuroscience and neurobiology community. This book will provide the necessary background information to understand the basics of MR spectroscopy. This will be followed by a detailed discussion of the normal biochemical maturation which will highlight the metabolic differences between the pediatric and adult brain. Thereafter, in SECTION I individual chapters will address various pediatric brain disease families. Of particular importance for pediatrics are case studies. For that reason, SECTION II will contain a large number of case studies. This will be particularly important for clinicians who may want to see examples of MRS for various conditions. A standardized format will be used for case reports that allow the reader to quickly understand the history of each case presented and the significance of the findings. The case reports will also include information from other imaging modalities to point out any added value of MRS in addition to conventional studies and clinical information. This section is necessary because the format of providing more complete information about individual patients is not practical for the chapters in SECTION I.
Quantitative Magnetic Resonance Imaging is a 'go-to' reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: - The basic physics behind tissue property mapping - How to implement basic pulse sequences for the quantitative measurement of tissue properties - The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* - The pros and cons for different approaches to mapping perfusion - The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor - maps and more complex representations of diffusion - How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed - How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance - Fingerprinting can be used to accelerate or improve tissue property mapping schemes - How tissue property mapping is used clinically in different organs - Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds - Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements - Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges - Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches
Magnetic resonance elastography (MRE) is a medical imaging technique that combines magnetic resonance imaging (MRI) with mechanical vibrations to generate maps of viscoelastic properties of biological tissue. It serves as a non-invasive tool to detect and quantify mechanical changes in tissue structure, which can be symptoms or causes of various diseases. Clinical and research applications of MRE include staging of liver fibrosis, assessment of tumor stiffness and investigation of neurodegenerative diseases. The first part of this book is dedicated to the physical and technological principles underlying MRE, with an introduction to MRI physics, viscoelasticity theory and classical waves, as well as vibration generation, image acquisition and viscoelastic parameter reconstruction. The second part of the book focuses on clinical applications of MRE to various organs. Each section starts with a discussion of the specific properties of the organ, followed by an extensive overview of clinical and preclinical studies that have been performed, tabulating reference values from published literature. The book is completed by a chapter discussing technical aspects of elastography methods based on ultrasound.
Functional Neuroradiology: Principles and Clinical Applications, is a follow-up to Faro and Mohamed’s groundbreaking work, Functional (BOLD)MRI: Basic Principles and Clinical Applications. This new 49 chapter textbook is comprehensive and offers a complete introduction to the state-of-the-art functional imaging in Neuroradiology, including the physical principles and clinical applications of Diffusion, Perfusion, Permeability, MR spectroscopy, Positron Emission Tomography, BOLD fMRI and Diffusion Tensor Imaging. With chapters written by internationally distinguished neuroradiologists, neurologists, psychiatrists, cognitive neuroscientists, and physicists, Functional Neuroradiology is divided into 9 major sections, including: Physical principles of all key functional techniques, Lesion characterization using Diffusion, Perfusion, Permeability, MR spectroscopy, and Positron Emission Tomography, an overview of BOLD fMRI physical principles and key concepts, including scanning methodologies, experimental research design, data analysis, and functional connectivity, Eloquent Cortex and White matter localization using BOLD fMRI and Diffusion Tensor Imaging, Clinical applications of BOLD fMRI in Neurosurgery, Neurology, Psychiatry, Neuropsychology, and Neuropharmacology, Multi-modality functional Neuroradiology, Beyond Proton Imaging, Functional spine and CSF imaging, a full-color Neuroanatomical Brain atlas of eloquent cortex and key white matter tracts and BOLD fMRI paradigms. By offering readers a complete overview of functional imaging modalities and techniques currently used in patient diagnosis and management, as well as emerging technology, Functional Neuroradiology is a vital information source for physicians and cognitive neuroscientists involved in daily practice and research.
Presents an overview of the basic principles and clinical applications for 3 tesla (3 T) MR imaging. This title describes the situations that dictate the use of 3 T, and explains the numerous clinical advantages of this field strength by drawing comparisons to corresponding studies at 1.5 T.