Download Free Climate Prediction And Agriculture Book in PDF and EPUB Free Download. You can read online Climate Prediction And Agriculture and write the review.

El Nino has been with us for centuries, but now we can forcast it, and thus can prepare far in advance for the extreme climatic events it brings. The emerging ability to forecast climate may be of tremendous value to humanity if we learn how to use the information well. How does society cope with seasonal-to-interannual climatic variations? How have climate forecasts been usedâ€"and how useful have they been? What kinds of forecast information are needed? Who is likely to benefit from forecasting skill? What are the benefits of better forecasting? This book reviews what we know about these and other questions and identifies research directions toward more useful seasonal-to-interannual climate forecasts. In approaching their recommendations, the panel explores: Vulnerability of human activities to climate. State of the science of climate forecasting. How societies coevolved with their climates and cope with variations in climate. How climate information should be disseminated to achieve the best response. How we can use forecasting to better manage the human consequences of climate change.
Based on an International Workshop held in Geneva in 2005, this book reviews the advances made so far in seasonal climate predictions and their applications for management and decision-making in agriculture. It also identifies the challenges to be addressed in the next 5 to 10 years to further enhance operational applications of climate predictions in agriculture, especially in developing countries.
Originally formed around a set of lectures presented at a NATO Advanced Study Institute (ASI), this book has grown to become organised and presented rather more as a textbook than as a standard "collection of proceedings". This therefore is the first unified reference ‘textbook’ in seasonal to interannual climate predictions and their practical uses. Written by some of the world’s leading experts, the book covers a rapidly-developing science of prime social concern.
Climate variability has major impacts in many parts of the world, including Australia. Developments in understanding of the El Niño - Southern Oscillation Phenomenon have introduced some skill in seasonal to inter-annual climate forecasting. Can this skill be harnessed to advantage? Or do we just continue to observe these impacts? How does a decision-maker managing an agricultural or natural ecosystem modify decisions in response to a skillful, but imprecise, seasonal climate forecast? Using Australian experience as a basis, this book focuses on these questions in pursuing means to better manage climate risks. The state of the science in climate forecasting is reviewed before considering detailed examples of applications to: farm scale agricultural decisions (such as management of cropping and grazing systems); regional and national scale agricultural decisions (such as commodity trading and government policy); and natural systems (such as water resources, pests and diseases, and natural fauna). Many of the examples highlight the participatory and inter-disciplinary approach required among decision-makers, resource systems scientists/analysts, and climate scientists to bring about the effective applications. The experiences discussed provide valuable insights beyond the geographical and disciplinary focus of this book. The book is ideally suited to professionals and postgraduate students in ecology, agricultural climatology, environmental planning, and climate science.
Can we unlock resilience to climate stress by better understanding linkages between the environment and biological systems? Agroclimatology allows us to explore how different processes determine plant response to climate and how climate drives the distribution of crops and their productivity. Editors Jerry L. Hatfield, Mannava V.K. Sivakumar, and John H. Prueger have taken a comprehensive view of agroclimatology to assist and challenge researchers in this important area of study. Major themes include: principles of energy exchange and climatology, understanding climate change and agriculture, linkages of specific biological systems to climatology, the context of pests and diseases, methods of agroclimatology, and the application of agroclimatic principles to problem-solving in agriculture.
Many climatic extremes around the globe, such as severe droughts and floods, can be attributed to the periodic warming of the equatorial Pacific sea surface, termed the El Niño or Southern Oscillation (ENSO). Advances in our understanding of ENSO, in which Edward S. Sarachik and Mark A. Cane have been key participants, have led to marked improvements in our ability to predict its development months or seasons, allowing adaptation to global impacts. This book introduces basic concepts and builds to more detailed theoretical treatments. Chapters on the structure and dynamics of the tropical ocean and atmosphere place ENSO in a broader observational and theoretical context. Chapters on ENSO prediction, past and future, and impacts, introduce broader implications of the phenomenon. This book provides an introduction to all aspects of this most important mode of global climate variability, for research workers and students of all levels in climate science, oceanography and related fields.
The countries of West Asia and North Africa (WANA) have long had the challenge of providing sustainable livelihoods for their populations in the fragile ecosystems of semi-arid and arid areas. Climate change is already a reality in WANA and it places additional constraints on the already fragile ecosystems of dry areas and limited natural resources in WANA. A comprehensive and integrated approach to planning and implementing the climate change adaptation strategies across the wide range of agro-ecosystems in different countries in WANA could help both the planners and the local communities to deal effectively with the projected impacts and also contribute to overall sustainability of agricultural production systems. This book addresses the important issue of climate change and food security in West Asia and North Africa and presents the appropriate strategies which could help in the development of new policies to better adapt agriculture production systems and enhance food security in WANA.
The Gap Between Weather and Climate Forecasting: Sub-seasonal to Seasonal Prediction is an ideal reference for researchers and practitioners across the range of disciplines involved in the science, modeling, forecasting and application of this new frontier in sub-seasonal to seasonal (S2S) prediction. It provides an accessible, yet rigorous, introduction to the scientific principles and sources of predictability through the unique challenges of numerical simulation and forecasting with state-of-science modeling codes and supercomputers. Additional coverage includes the prospects for developing applications to trigger early action decisions to lessen weather catastrophes, minimize costly damage, and optimize operator decisions. The book consists of a set of contributed chapters solicited from experts and leaders in the fields of S2S predictability science, numerical modeling, operational forecasting, and developing application sectors. The introduction and conclusion, written by the co-editors, provides historical perspective, unique synthesis and prospects, and emerging opportunities in this exciting, complex and interdisciplinary field. - Contains contributed chapters from leaders and experts in sub-seasonal to seasonal science, forecasting and applications - Provides a one-stop shop for graduate students, academic and applied researchers, and practitioners in an emerging and interdisciplinary field - Offers a synthesis of the state of S2S science through the use of concrete examples, enabling potential users of S2S forecasts to quickly grasp the potential for application in their own decision-making - Includes a broad set of topics, illustrated with graphic examples, that highlight interdisciplinary linkages
The Agricultural Outlook 2021-2030 is a collaborative effort of the Organisation for Economic Co-operation and Development (OECD) and the Food and Agriculture Organization (FAO) of the United Nations. It brings together the commodity, policy and country expertise of both organisations as well as input from collaborating member countries to provide an annual assessment of the prospects for the coming decade of national, regional and global agricultural commodity markets. The publication consists of 11 Chapters; Chapter 1 covers agricultural and food markets; Chapter 2 provides regional outlooks and the remaining chapters are dedicated to individual commodities.
The Anthropocene, the time of humans. Never has human influence on the functioning of the planet been greater or in more urgent need of mitigation. Climate change, the accelerated warming of the planet’s surface attributed to human activities, is now at the forefront of global politics. The agriculture sector not only contributes to climate change but also feels the severity of its effects, with the water, carbon and nitrogen cycles all subject to modification as a result. Crop production systems are each subject to different types of threat and levels of threat intensity. There is however significant potential to both adapt to and mitigate climate change within the agricultural sector and reduce these threats. Each solution must be implemented in a sustainable manner and tailored to individual regions and farming systems. This Special Issue evaluates a variety of potential climate change adaptation and mitigation techniques that account for this spatial variation, including modification to cropping systems, Climate-Smart Agriculture and the development and growth of novel crops and crop varieties.