Download Free Clean Water Act Research And Monitoring Book in PDF and EPUB Free Download. You can read online Clean Water Act Research And Monitoring and write the review.

The Mississippi River is, in many ways, the nation's best known and most important river system. Mississippi River water quality is of paramount importance for sustaining the many uses of the river including drinking water, recreational and commercial activities, and support for the river's ecosystems and the environmental goods and services they provide. The Clean Water Act, passed by Congress in 1972, is the cornerstone of surface water quality protection in the United States, employing regulatory and nonregulatory measures designed to reduce direct pollutant discharges into waterways. The Clean Water Act has reduced much pollution in the Mississippi River from "point sources" such as industries and water treatment plants, but problems stemming from urban runoff, agriculture, and other "non-point sources" have proven more difficult to address. This book concludes that too little coordination among the 10 states along the river has left the Mississippi River an "orphan" from a water quality monitoring and assessment perspective. Stronger leadership from the U.S. Environmental Protection Agency (EPA) is needed to address these problems. Specifically, the EPA should establish a water quality data-sharing system for the length of the river, and work with the states to establish and achieve water quality standards. The Mississippi River corridor states also should be more proactive and cooperative in their water quality programs. For this effort, the EPA and the Mississippi River states should draw upon the lengthy experience of federal-interstate cooperation in managing water quality in the Chesapeake Bay.
Provides a clearly presented overview of the law's provisions and pertient regulation and enforcement issues.
Environmental problems in coastal ecosystems can sometimes be attributed to excess nutrients flowing from upstream watersheds into estuarine settings. This nutrient over-enrichment can result in toxic algal blooms, shellfish poisoning, coral reef destruction, and other harmful outcomes. All U.S. coasts show signs of nutrient over-enrichment, and scientists predict worsening problems in the years ahead. Clean Coastal Waters explains technical aspects of nutrient over-enrichment and proposes both immediate local action by coastal managers and a longer-term national strategy incorporating policy design, classification of affected sites, law and regulation, coordination, and communication. Highlighting the Gulf of Mexico's "Dead Zone," the Pfiesteria outbreak in a tributary of Chesapeake Bay, and other cases, the book explains how nutrients work in the environment, why nitrogen is important, how enrichment turns into over-enrichment, and why some environments are especially susceptible. Economic as well as ecological impacts are examined. In addressing abatement strategies, the committee discusses the importance of monitoring sites, developing useful models of over-enrichment, and setting water quality goals. The book also reviews voluntary programs, mandatory controls, tax incentives, and other policy options for reducing the flow of nutrients from agricultural operations and other sources.
Water Quality – Science, Assessments and Policy examines many of the scientific issues; national, regional and local assessment practices and results; and national policy issues related to water quality. Chapters focus on three areas: water quality parameters, water quality treatments, and water quality assessments. This book provides a basic understanding of water quality issues and practical examples of their solution.
Legionnaires' disease, a pneumonia caused by the Legionella bacterium, is the leading cause of reported waterborne disease outbreaks in the United States. Legionella occur naturally in water from many different environmental sources, but grow rapidly in the warm, stagnant conditions that can be found in engineered water systems such as cooling towers, building plumbing, and hot tubs. Humans are primarily exposed to Legionella through inhalation of contaminated aerosols into the respiratory system. Legionnaires' disease can be fatal, with between 3 and 33 percent of Legionella infections leading to death, and studies show the incidence of Legionnaires' disease in the United States increased five-fold from 2000 to 2017. Management of Legionella in Water Systems reviews the state of science on Legionella contamination of water systems, specifically the ecology and diagnosis. This report explores the process of transmission via water systems, quantification, prevention and control, and policy and training issues that affect the incidence of Legionnaires' disease. It also analyzes existing knowledge gaps and recommends research priorities moving forward.
Recognizing the importance of wetland protection, the Bush administration in 1988 endorsed the goal of "no net loss" of wetlands. Specifically, it directed that filling of wetlands should be avoided, and minimized when it cannot be avoided. When filling is permitted, compensatory mitigation must be undertaken; that is, wetlands must be restored, created, enhanced, and, in exceptional cases, preserved, to replace the permitted loss of wetland area and function, such as water quality improvement within the watershed. After more than a dozen years, the national commitment to "no net loss" of wetlands has been evaluated. This new book explores the adequacy of science and technology for replacing wetland function and the effectiveness of the federal program of compensatory mitigation in accomplishing the nation's goal of clean water. It examines the regulatory framework for permitting wetland filling and requiring mitigation, compares the mitigation institutions that are in use, and addresses the problems that agencies face in ensuring sustainability of mitigated wetlands over the long term. Gleaning lessons from the mixed results of mitigation efforts to date, the book offers 10 practical guidelines for establishing and monitoring mitigated wetlands. It also recommends that federal, state, and local agencies undertake specific institutional reforms. This book will be important to anyone seeking a comprehensive understanding of the "no net loss" issue: policy makers, regulators, environmental scientists, educators, and wetland advocates.
In order to confront the increasingly severe water problems faced by all parts of the country, the United States needs to make a new commitment to research on water resources. A new mechanism is needed to coordinate water research currently fragmented among nearly 20 federal agencies. Given the competition for water among farmers, communities, aquatic ecosystems and other users-as well as emerging challenges such as climate change and the threat of waterborne diseases-Confronting the Nation's Water Problems concludes that an additional $70 million in federal funding should go annually to water research. Funding should go specifically to the areas of water demand and use, water supply augmentation, and other institutional research topics. The book notes that overall federal funding for water research has been stagnant in real terms for the past 30 years and that the portion dedicated to research on water use and social science topics has declined considerably.
This guidebook, now thoroughly updated and revised in its second edition, gives comprehensive advice on the designing and setting up of monitoring programmes for the purpose of providing valid data for water quality assessments in all types of freshwater bodies. It is clearly and concisely written in order to provide the essential information for all agencies and individuals responsible for the water quality.