Download Free Classification Theory For Abstract Elementary Classes Book in PDF and EPUB Free Download. You can read online Classification Theory For Abstract Elementary Classes and write the review.

In this research monograph, the author's work on classification and related topics are presented. This revised edition brings the book up to date with the addition of four new chapters as well as various corrections to the 1978 text.The additional chapters X - XIII present the solution to countable first order T of what the author sees as the main test of the theory. In Chapter X the Dimensional Order Property is introduced and it is shown to be a meaningful dividing line for superstable theories. In Chapter XI there is a proof of the decomposition theorems. Chapter XII is the crux of the matter: there is proof that the negation of the assumption used in Chapter XI implies that in models of T a relation can be defined which orders a large subset of m
Model theory is one of the central branches of mathematical logic. The field has evolved rapidly in the last few decades. This book is an introduction to current trends in model theory, and contains a collection of articles authored by top researchers in the field. It is intended as a reference for students as well as senior researchers.
This volume introduces a general method for building infinite mathematical structures and surveys applications in algebra and model theory. It covers basic model theory and examines a variety of algebraic applications, including completeness for Magidor-Malitz quantifiers, Shelah's recent and sophisticated omitting types theorem for L(Q), and applications to Boolean algebras. Over 160 exercises. 1985 edition.
This book presents the theory of proper forcing and its relatives from the beginning. No prior knowledge of forcing is required.
First the concepts of [lambda]-presentable objects, locally [lambda]-presentable categories, and [lambda]-accessible categories are discussed in detail. The authors go on to prove that Freyd's essentially algebraic categories are precisely the locally presentable categories. In the final chapter they treat some advanced topics in model theory. For researchers in category theory, algebra, computer science, and model theory, this book will be a necessary purchase.
The 1970s saw the appearance and development in categoricity theory of a tendency to focus on the study and description of uncountably categorical theories in various special classes defined by natural algebraic or syntactic conditions. There have thus been studies of uncountably categorical theories of groups and rings, theories of a one-place function, universal theories of semigroups, quasivarieties categorical in infinite powers, and Horn theories. In Uncountably Categorical Theories , this research area is referred to as the special classification theory of categoricity. Zilber's goal is to develop a structural theory of categoricity, using methods and results of the special classification theory, and to construct on this basis a foundation for a general classification theory of categoricity, that is, a theory aimed at describing large classes of uncountably categorical structures not restricted by any syntactic or algebraic conditions.
"Modern model theory began with Morley's categoricity theorem: A countable first-order theory that has a unique (up to isomorphism) model in one uncountable cardinal (i.e., is categorical in cardinality) if and only if the same holds in all uncountable cardinals. Over the last 35 years Shelah made great strides in extending this result to infinitary logic, where the basic tool of compactness fails. He invented the notion of an Abstract Elementary Class to give a unifying semantic account of theories in first-order, infinitary logic and with some generalized quantifiers. Zilber developed similar techniques of infinitary model theory to study complex exponentiation." "This book provides the first unified and systematic exposition of this work. The many examples stretch from pure model theory to module theory and covers of Abelian varieties. Assuming only a first course in model theory, the book expounds eventual categoricity results (for classes with amalgamation) and categoricity in excellent classes. Such crucial tools as Ehrenfeucht-Mostowski models, Galois types, tameness, omitting-types theorems, multi-dimensional amalgamation, atomic types, good sets, weak diamonds, and excellent classes are developed completely and methodically. The (occasional) reliance on extensions of basic set theory is clearly laid out. The book concludes with a set of open problems." --Book Jacket.