Download Free Classical Econophysics Book in PDF and EPUB Free Download. You can read online Classical Econophysics and write the review.

This book sets out to address some basic questions drawing from classical political economy and information theory and using an econophysics methodology: What is information? Why is it valuable? What is the relationship between money and information?
This monograph examines the domain of classical political economy using the methodologies developed in recent years both by the new discipline of econo-physics and by computing science. This approach is used to re-examine the classical subdivisions of political economy: production, exchange, distribution and finance. The book begins by examining the most basic feature of economic life – production – and asks what it is about physical laws that allows production to take place. How is it that human labour is able to modify the world? It looks at the role that information has played in the process of mass production and the extent to which human labour still remains a key resource. The Ricardian labour theory of value is re-examined in the light of econophysics, presenting agent based models in which the Ricardian theory of value appears as an emergent property. The authors present models giving rise to the class distribution of income, and the long term evolution of profit rates in market economies. Money is analysed using tools drawn both from computer science and the recent Chartalist school of financial theory. Covering a combination of techniques drawn from three areas, classical political economy, theoretical computer science and econophysics, to produce models that deepen our understanding of economic reality, this new title will be of interest to higher level doctoral and research students, as well as scientists working in the field of econophysics.
This book constitutes the refereed proceedings of the 7th International Conference on Quantum Interaction, QI 2013, held in Leicester, UK, in July 2013. The 31 papers presented in this book were carefully selected from numerous submissions. The papers cover various topics on quantum interaction and revolve around four themes: information processing/retrieval/semantic representation and logic; cognition and decision making; finance/economics and social structures and biological systems.
This book summarises progress in the understanding of financial markets and economics based on the established methodology of statistical physics. It offers a new approach to the fundamentals of economics that offers the potential for increased insight and understanding. It should be of interest to all serious students of the subject.
The remarkable evolution of econophysics research has brought the deep synthesis of ideas derived from economics and physics to subjects as diverse as education, banking, finance, and the administration of large institutions. The original papers in this collection present a broad summary of these advances, written by interdisciplinary specialists. Included are studies on subjects in the development of econophysics; on the perspectives offered by econophysics on large problems in economics and finance, including the 2008-9 financial crisis; and on higher education and group decision making. The introductions and insights they provide will benefit everyone interested in applications of this new transdisciplinary science. Ten papers present an updated version of the origins, issues, and applications of econophysics Economics and finance chapters consider lessons learned from the 2008-9 financial crisis Sociophysics chapters propose new thinking on educational reforms and group decision making
The primary goal of this book is to present the research findings and conclusions of physicists, economists, mathematicians and financial engineers working in the field of "Econophysics" who have undertaken agent-based modelling, comparison with empirical studies and related investigations. Most standard economic models assume the existence of the representative agent, who is “perfectly rational” and applies the utility maximization principle when taking action. One reason for this is the desire to keep models mathematically tractable: no tools are available to economists for solving non-linear models of heterogeneous adaptive agents without explicit optimization. In contrast, multi-agent models, which originated from statistical physics considerations, allow us to go beyond the prototype theories of traditional economics involving the representative agent. This book is based on the Econophys-Kolkata VII Workshop, at which many such modelling efforts were presented. In the book, leading researchers in their fields report on their latest work, consider recent developments and review the contemporary literature.
This book will appeal to the lay-reader with an interest in the history of what is today termed ‘Econophysics’, looking at various works throughout the ages that have led to the emergence of this field. It begins with a discussion of the philosophers and scientists who have contributed to this discipline, before moving on to considering the contributions of different institutions, books, journals and conferences in nurturing the subject.
The first monograph in econophysics focussed on the analyses and modelling of these distributions, ideal for physicists and economists.
Filling the gap for an up-to-date textbook in this relatively new interdisciplinary research field, this volume provides readers with a thorough and comprehensive introduction. Based on extensive teaching experience, it includes numerous worked examples and highlights in special biographical boxes some of the most outstanding personalities and their contributions to both physics and economics. The whole is rounded off by several appendices containing important background material.
This book concerns the use of concepts from statistical physics in the description of financial systems. The authors illustrate the scaling concepts used in probability theory, critical phenomena, and fully developed turbulent fluids. These concepts are then applied to financial time series. The authors also present a stochastic model that displays several of the statistical properties observed in empirical data. Statistical physics concepts such as stochastic dynamics, short- and long-range correlations, self-similarity and scaling permit an understanding of the global behaviour of economic systems without first having to work out a detailed microscopic description of the system. Physicists will find the application of statistical physics concepts to economic systems interesting. Economists and workers in the financial world will find useful the presentation of empirical analysis methods and well-formulated theoretical tools that might help describe systems composed of a huge number of interacting subsystems.