Download Free Classical Double Copy The New Connections In Gauge Theory And Gravity Book in PDF and EPUB Free Download. You can read online Classical Double Copy The New Connections In Gauge Theory And Gravity and write the review.

Our current understanding of nature is in terms of matter that is acted on by forces. There are four fundamental forces, of which three are described by so-called gauge theories, a type of quantum field theory. The fourth force, gravity, is best described by general relativity, and our traditional ways of thinking about gauge theories and gravity look completely different from each other.In recent years, an exciting new correspondence called the 'double copy' has emerged, which suggests that the above theories may be much more closely related than previously thought. Inspired by previous work in string theory, it originated in the study of how particles interact, but has since been generalised to show that many gravitational quantities can be simply obtained by recycling simpler gauge theory results. This has significant practical applications — such as new calculational tools for astrophysics — but is also of conceptual importance, in suggesting that our current ways of thinking about fundamental physics are hiding a vast underlying structure.This book reviews our current theories of fundamental physics, before describing in detail how the double copy was discovered, how it can be applied to different types of object in gauge or gravity theory, and what its current and future applications are. No prior knowledge of quantum field theory or string theory is assumed, such that the book will be of interest to a broad audience of physicists and mathematicians.
Our current understanding of nature is in terms of matter that is acted on by forces. There are four fundamental forces, of which three are described by so-called gauge theories, a type of Quantum Field Theory. The fourth force, gravity, is best described by General Relativity, and our traditional ways of thinking about gauge theories and gravity look completely different from each other.In recent years, an exciting new correspondence called the 'double copy' has emerged, that suggests that the above theories may be much more closely related than previously thought. Inspired by previous work in string theory, it originated in the study of how particles interact, but has since been generalised to show that many gravitational quantities can be simply obtained by recycling simpler gauge theory results. This has significant practical applications -- such as new calculational tools for astrophysics -- but is also of conceptual importance, in suggesting that our current ways of thinking about fundamental physics are hiding a vast underlying structure.This book reviews our current theories of fundamental physics, before describing in detail how the double copy was discovered, how it can be applied to different types of object in gauge or gravity theory, and what its current and future applications are. No prior knowledge of quantum field theory or string theory is assumed, such that the book will be of interest to a broad audience of physicists and mathematicians.
This text provides a framework for describing and organizing the basic forces of nature and the interactions of subatomic particles. A detailed and self-contained mathematical account of gauge theory, it is geared toward beginning graduate students and advanced undergraduates in mathematics and physics. This well-organized treatment supplements its rigor with intuitive ideas. Starting with an examination of principal fiber bundles and connections, the text explores curvature; particle fields, Lagrangians, and gauge invariance; Lagrange's equation for particle fields; and the inhomogeneous field equation. Additional topics include free Dirac electron fields; interactions; calculus on frame bundle; and unification of gauge fields and gravitation. The text concludes with references, a selected bibliography, an index of notation, and a general index.
The three volumes of the proceedings of MG15 give a broad view of all aspects of gravitational physics and astrophysics, from mathematical issues to recent observations and experiments. The scientific program of the meeting included 40 morning plenary talks over 6 days, 5 evening popular talks and nearly 100 parallel sessions on 71 topics spread over 4 afternoons. These proceedings are a representative sample of the very many oral and poster presentations made at the meeting.Part A contains plenary and review articles and the contributions from some parallel sessions, while Parts B and C consist of those from the remaining parallel sessions. The contents range from the mathematical foundations of classical and quantum gravitational theories including recent developments in string theory, to precision tests of general relativity including progress towards the detection of gravitational waves, and from supernova cosmology to relativistic astrophysics, including topics such as gamma ray bursts, black hole physics both in our galaxy and in active galactic nuclei in other galaxies, and neutron star, pulsar and white dwarf astrophysics. Parallel sessions touch on dark matter, neutrinos, X-ray sources, astrophysical black holes, neutron stars, white dwarfs, binary systems, radiative transfer, accretion disks, quasars, gamma ray bursts, supernovas, alternative gravitational theories, perturbations of collapsed objects, analog models, black hole thermodynamics, numerical relativity, gravitational lensing, large scale structure, observational cosmology, early universe models and cosmic microwave background anisotropies, inhomogeneous cosmology, inflation, global structure, singularities, chaos, Einstein-Maxwell systems, wormholes, exact solutions of Einstein's equations, gravitational waves, gravitational wave detectors and data analysis, precision gravitational measurements, quantum gravity and loop quantum gravity, quantum cosmology, strings and branes, self-gravitating systems, gamma ray astronomy, cosmic rays and the history of general relativity.
This book provides a comprehensive, pedagogical introduction to scattering amplitudes in gauge theory and gravity for graduate students.
Electromagnetism is one of the four fundamental forces in nature, and underlies almost everything we experience in our daily lives, whether we realise it or not. The complete theory was first written down in the late 19th century, and remains an essential part of a scientific education. The mathematics behind the theory, however, can be intimidatingly complex. Furthermore, it is not always clear to beginners why the theory is either useful or interesting, nor how it relates to modern research in theoretical physics.The aim of this book is to guide students towards a detailed understanding of the full theory of electromagnetism, including its practical applications. Later chapters introduce more modern formulations of the theory than are found in traditional undergraduate courses, thus bridging the gap between a first course in electromagnetism, and the advanced concepts needed for further study in physics. The final chapter reviews exciting current research stating that possible theories of (quantum) gravity may be much more closely related to electromagnetism than previously thought.Throughout the book, an informal conversational style is used to demystify intimidating concepts. Relevant mathematical ideas are introduced in a self-contained manner, and exercises are provided with full solutions to aid understanding. This book is essential reading for anyone undertaking a physics degree, but will also be of interest to engineers and chemists.
The first textbook on this important topic, for graduate students and researchers in particle and condensed matter physics.
Self-contained and comprehensive, this definitive new edition provides a complete overview of the intersection of gravity, supergravity, and superstrings.
The main focus of this year's Proceedings of the 53rd Course of the International School of Subnuclear Physics is the future of physics, including the new frontiers in other fields.
This volume is a compilation of works which, taken together, give a complete and consistent presentation of instanton calculus in non-Abelian gauge theories, as it exists now. Some of the papers reproduced are instanton classics. Among other things, they show from a historical perspective how the instanton solution has been found, the motivation behind it and how the physical meaning of instantons has been revealed. Other papers are devoted to different aspects of instanton formalism including instantons in supersymmetric gauge theories. A few unsolved problems associated with instantons are described in great detail. The papers are organized into several sections that are linked both logically and historically, accompanied by extensive comments.